Contents

1 Introduction

1.1 About Python and Other Programming Languages
Understanding programs
1.2 Obtaining and Installing Python
1.3 Using Python o
1.4 Editing Programs with IDLE
2 Simple Python Code
2.1 Afirst program
2.2 What can go wrong?
2.3 Variables and types oo
Assignments
Names oo o
Types
2.4 Numeric Types e
Integers Lo
Floating Point numbers
Converting between types
The Math library
The Random library
25 Strings
String formatting L oL oL
Strings and encodings (optional)
2.6 Input and Output,
Input from theuser
Printing
2.7 Exercises

3 Control Structures

3.1 If-statements
3.2 Booleans
3.3 While-loops

Input loops
3.4 For-loops

CONTENTS

3.5 Designing code with loops 77
3.6 Break-statements and Continue-statements 84

Break-statements L. 84

Continue-statements 85
3.7 LoopPatterns. 87

Input Loops o 87

Process elements of a sequence 87

Do something until a condition is satisfied 88
3.8 Exercises 89
Functions 91
4.1 Conceptso 92
4.2 Function definitions — the basics 93

Scoping Rules o 98
4.3 Parameters and Arguments L. 100

Examples o 102
4.4 The Calendar program oL 113
4.5 Recursion 120
4.6 EXercises e e 132
Testing and Debugging 135
5.1 Testing Your Code, 136

When To Test, 136

Test Cases. oo e 137

Howtotest 139

Debugging — making use of testing results 140
5.2 The Shell Debugger 142
53 Pdb . .. 156
Data Structures 163
6.1 Concepts 164
6.2 Lists 166
6.3 Dictionaries 173
6.4 Tuples 177
6.5 Sets 181
6.6 Exercises 188
Files 191
7.1 Concepts 192
7.2 Writing Files 194
7.3 Reading Fileso oo 197
7.4 Try-Except Statements 201

CONTENTS

8 Objects and Classes
8.1 Concepts
8.2 Examplesof Classes
8.3 Special Methods,
8.4 Subclasses e
8.5 Object-Oriented Design
8.6 Exercises

9 Graphics and User Interfaces
9.1 Tk Concepts and Terminology
Menus
Buttons
Labels
9.2 Widgets with Values
9.3 Drawing
9.4 Animation Lo
95 Events

CONTENTS

Chapter 1

Introduction

Python is both a useful all-purpose programming language and an excellent tool
for introducing the concepts of programming. In this chapter we’ll see how to
install and run Python, and also how to use the programming environment that
comes with Python. You might just skim the last few sections of this chapter
at the start and then come back to them after you have studied the material in
chapters 2 through 4. Much of the advice found here will seem more relevant
after you know a bit about programming.

6 CHAPTER 1. INTRODUCTION

1.1 About Python and Other Programming Lan-
guages

Although a host of science fiction movies would have it otherwise, computers
don’t think, they just follow simple instructions. Computers are not even so-
phisticated enough to understand human languages, they need their own ultra-
simple languages. In the end, the instructions that computers can follow are
things like ”Take the numbers from this memory location and that memory
location, add them together, and put result into this location.” The first pro-
gramming languages in the 1950’s were expressed in terms very similar to these.
Because it is difficult for people to think in such basic terms, computer scien-
tists have gradually learned how to create languages that humans can easily
work with, but that can be translated into the simple instructions that can be
followed by a computer. These are called programming languages. Thousands
of programming languages have been created, but a relatively small number are
in common use today. In these notes we will work with one language, called
Python that was invented in 1989 by the Dutch programmer Guido van Rossum.
Unfortunately, people don’t always get along, and in 2008 Python bifurcated
into two similar languages, Python2 and Python3 because the language devel-
opers couldn’t agree on what were mainly minor differences of syntax. In these
notes we will use Python3 and we will usually refer to the language simply as
Python.

Just to give you a sense of the variety of programming languages that are in
use, here are programs from different languages that all print to the computer
screen the result of multiplying 3 and 4:

#include <stdio.h>
int main(void)
{
int x, vy;
x = 3;
y = 4;
printf("%d\n", xxy);
return 0;

Program 1.1.1: The C programming language

1.1.

ABOUT PYTHON AND OTHER PROGRAMMING LANGUAGES

#include <iostream>

using namespace std;
int main()

{
int x, vy;
x = 3;
y=4;
cout << xxy << endl;
return 0;
}

Program 1.1.2: The C+4++ programming language

program Times
integer x
integer y
x = 3
y =4
print x, xxy
end program Times

Program 1.1.3: Fortran

public class Times {

public static void main(String[]
int x, vy;
x = 3;
y = 4,

System .out. println (xxy);

args) {

Program 1.1.4: Java

Here this program is in Python:

8 CHAPTER 1. INTRODUCTION

x =3
y =4
print(xxy)

Program 1.1.5: Python

Notice how much simpler this program is in Python. There are two things that
Python does differently than most programming languages:

e Most languages group statements together with some type of bracket or
connective terminology. The ”{” and ”}” symbols you see in some of these
programs are examples of this. Python uses instead the way the program
is laid out on the page. This makes Python programs easier to read.

e Most languages require the programmer to say what kind of data will be
stored in variables. In the programs above ”x” and "y” are variables —
names attached to memory locations that will be used to store data. All
of the examples except the one in Python have statements that say that
these are ”int” or ”integer” variables. The Python system deduces this
information from the program itself; it does not require the user to specify

it.

In general, Python has less verbiage around a program and lets the programmer
concentrate on the actual instructions in the code. This helps to make Python
programs are easier to read, and, as we will emphasize many times in these
notes, readable programs are more likely to be correct.

There are two types of programming languages. In both types the program
needs to be run through a software system, because almost no one wants to
program in a language that the computer can execute directly. Compiled lan-
guages can be converted into machine code. Programs in such languages are run
through a compiler, a program that converts the compilable program into ma-
chine code. This produces an executable program — a program that runs directly
on the machine. Most of the programs you have ever run, such as Microsoft
Word or Mozilla Firefox, are compiled. The compiler is needed to produce the
executable program, after that the executable stands on its own and can even
be copied and transferred to another system; the compile is no longer needed.
Interpreted programs are not converted to machine code; instead, they are run
through a system called an interpreter that executes the program one statement
at a time in the same way a computer would if it could understand the language
the program was written in. An interpreter needs to be used every time the
program is run. Python is interpreted, though there are ways to produce stan-
dalone Python programs that can be run without an interpreter. In general
compiled programs run more efficiently (faster, using less memory) than inter-
preted programs, though machines have become so fast and memory so cheap
that for many applications this is not an important distinction.

1.1. ABOUT PYTHON AND OTHER PROGRAMMING LANGUAGES 9

Understanding programs

Learning to read programs is an important part of learning to program. You
can’t read a program the way you read a book. You should read programs
the same way a computer does. Every instruction does one of two things — it
either changes the computer’s memory, or it alters the sequence in which the
statements are executed. Consider the following portion of a program:

x =5

if x < 10:
print (

else:
print("big")

"small”)

The first statement, x=5, changes the data stored in variable x (a memory
location) to 5. The next line, if x < 10: looks into the computer’s memory for
the value stored in variable x (we just set that value in the previous line, but
the system doesn’t remember this from one statement to the next. The system
doesn’t understand the program, it just follows it one instruction at a time.)
If the value in x is less than 10, the system executes the next line, which is
print("small"); if the value in x is not less than 10, the system executes the
line following else:, which is print("big"). Of course, you can do this in your
head if the program only has a few lines, but we will get to more sophisticated
programs quickly. When you are reading them, keep a piece of paper that
represents the computer’s memory. Each time a variable is given a value, write
it down on your paper. Walk through the program from the starting point
(you’ll see where that is in section 2.1) until you run out of instructions and you
will be executing the program the same way the computer does. This might
seem tedious, and it is. Computers are not ”smart”, they are just fast and
persistent. They don’t get bored. Computers do sophisticated things by doing
many, many simple instructions very, very quickly. In this course you will learn
to write these instructions in ways that will reliably get the computer to do the
things you want.

10 CHAPTER 1. INTRODUCTION

1.2 Obtaining and Installing Python

Python is a free, open source language whose interpreter runs in MS Windows,
Mac OS X and Linux environments. Python is built into the Macintosh operat-
ing system, but you should install it even if you use Macs because the operating
system does not have a full implementation, and what it does have is probably
not current. The language is maintained (programming lanugages evolve just
like human languages) by the Python Software Foundation. Guido van Rossum,
the inventor of Python is the President (also known as ”Benevolent Dictator for
Life”) of the Foundation but its board of directors also includes other prominent
computer scientists and representatives of major computing organizations and
corporations.

Installing Python is easy. The website for the software maintained by the
Python Software Foundation is http://www.python.org. Go to this site, then
to the Download tab (the tabs at present are in the upper left corner of the
page). There are two dialects of Python — Python2 and Python3. These are not
quite compatible, so it is important to know which one you are downloading.
These notes all refer to Python3, which is referenced on the Python website
as Python3.x.y, where x and y are release numbers. The current version is
Python3.4.3. For these notes, any Python3 release after Python3.2.0 will suffice.

On the Downloads page for Python you are presented with options for many
old versions; you should click on the Python3.4.3 link. Scroll down to the Files
section of the Release3.4.3 page. This has about 10 different options, only a few
of which are pertinent for most students:

e Mac 0S X 32-bit i386/PPC installer
e Mac 0S X 64-bit/32-bit installer

e Windows x86-64 MSI installer

e Windows x86 MSI installer

You may see different options when you go to this page. Making sense of this
is easier than you might think. If you run Windows the last two choices are for
you. You almost certainly want the last of these; the previous one is for those
few machines that run a 64-bit version of Windows; you would know if this is
you. So choose your link and click on it. After a few seconds this downloads
the installer into your Downloads folder. Once it is downloaded, click on the
installer and do what it says. There will be some questions about where to
install things; the defaults are almost always good options. You will need to
accept the license agreement. The whole process takes about 5 minutes if you
have a good Internet connection.

If you have a Mac, you need to find out which version of OS X is installed
on it. Go to the Apple menu (its icon is a picture of an apple) at the top left
of the menu bar. One of the menu items is ”About this Mac”. Select this
and a window will pop up with lots of information about the system, including
which version of OS X is installed. Most likely you have 10.6 (also called ”Snow

1.2. OBTAINING AND INSTALLING PYTHON 11

Leopard) or one of the more recent versions. Every Mac produced after August
of 2009 has OS X 10.6 or higher. If this is the case with your machine, click on
the second Mac link ("Mac 0S X 64-bit/32-bit installer”) If your machine
is older, click on the first Mac link. If somehow neither of these seems right, ask
for help.

Just as with Windows, once you have selected the correct link, click on
it to download the installer, then run the installer to install Python. There
will be a few questions, and you must accept the license agreement. As with
Windows, the installation process should only take a few minutes if you have a
good connection.

Now that you have installed Python, you need to be able to find it. On a Mac
there should be a Python folder in the Applications section of the Finder. This
has several programs in it, the two most important of which are called IDLE
and Python Launcher. On Windows, go to the Start window. The installer
may have left an icon for Python in the Start window. If not, follow the All
Programs link to a list of all of your installed programs. This should have a link
to Python, again with several programs including IDLE. In the next section we
will look at the ways the various Python programs can be used.

12 CHAPTER 1. INTRODUCTION

1.3 Using Python

The Python system that you have installed on your computer has several tools
for developing and running Python programs. One of these is called ”python”
on Windows and ”Python Launcher” on a Mac. This tool allows the system to
run programs written in the Python language. This opens a window for the pro-
gram’s input and output, runs the program, and then closes this window. Think
for a moment, however, about what this means. Suppose you have a program
that opens up a dictionary and looks for words that contain four consecutive
vowels, such as "queue”. This program needs no input from the user. It opens
the dictionary file, opens a window to print its output, prints that output and
stops. At the end of the program it closes any files or windows it has opened.
This program can run in a small fraction of a second. It does give some output,
but that output goes into a window that closes before you have a chance to read
it. The entire process is useless — the program has done its job, but its output
has not been available for the human user.

In Chapter 8 of these notes we will look at programs that create a graphical
user interface,with buttons, menus and similar "widgets”. As we will see, these
programs need to be run through the Python Launcher. The programs and the
windows they create will persist until the user clicks a Quit button, so we will
have time to examine any output from the program. For all of the work we will
do prior to Chapter 8 we will use a different tool for both creating and running
the program. This is called IDLE (after Eric Idle, one of the founding members
of the Monty Python comedy group). IDLE can be found the way you find
other programs on your computer — from the Start window’s All Programs link
on Windows or from the Applications folder of the Macintosh Finder. On either
system look for the Python (or Python3.4) folder, and IDLE will be one of the
programs inside it.

IDLE has two primary windows: an editor window and a command inter-
preter, or shell, window. (A command interpreter is called a ”shell” because it
is the interface between the internals of a program and the outside world.) The
editor lets you create programs. The command interpreter will run the program
that is in the editor window, and it also has a prompt for you to enter Python
command that will be excecuted as you enter them. For example, if you enter

> 344xb5
at the prompt the system will reply
23

Each of these windows has an Options menu with a Configure IDLE item that
allows you to specify which window should be on top when you start IDLE.
From the editor window there is a Shell item in the Run menu that brings up
a shell. Alternatively, if you select the Run Module item in the Run menu the
program in the edit window will be executed. If you are in a shell window
and want to create a new program, from the File menu select New Window and
a new editor window will be opened, into which you can type your program.

1.3. USING PYTHON 13

Note that you must save the program to a file (Save As from the File menu)
before you can run it. Be sure you know which window you are saving — it is
not uncommon for beginners to save the shell window where the program was
executed. You want to save the IDLE editor window that has the code for the
program.

Suppose we type the following program into the editor and save it as file
Heads.py. Note that by convention Python programs are always given names
that end in ”.py”. This suffix is the what the system uses to recognize the file
as containing Python code.

from random import x

def Toss():
x = randint (0, 1)
if x = 0:
return " Heads”
else:

return " Tails”

def CountHeads(N):
count = 0
for x in range(N):

result = Toss()
if result — "Heads":
count = count + 1

return count
def main ():
num = CountHeads(1000)
print("%d out of %d" %(num, 1000))

main ()

Program 1.3.1: Counting Heads in a series of tosses

This needs to be typed in exactly as it looks here; if there are typos the program
won’t run. We will see later how to find and eliminate errors; for now we’ll
just assume there aren’t any. You will see that the editor colors some words
differently than others; we will discuss the significance of this later. After we
save this program we can run it by selecting Run Module from the Run menu of
the edit window. This will open a shell in which you will see the output of the
program, a line such as

483 out of 1000

14 CHAPTER 1. INTRODUCTION

This program simulates 1000 random tosses of a coin, so the output will change
each time we run it. We can run the program again either by going back to the
edit window (which should still be open) and again selecting Run Module from
the Run menu, or in the shell window we could type

> main ()

You might not fully understand why this works until you have read Chapter 5
on functions, but we will set up all of our programs so at the top level there is
a function main(), so you can always re-run a program by typing that into the
shell after the program has run once.

Most of the times you use Python you will not be typing a program into
the system from scratch. It is much more common to start with an existing
program and modify it into the program you want. Sometimes you will just
want to examine a program to see how it works. To bring up a program in the
IDLE editor you need to click on it in a special way. On Windows systems you
click with the right mouse button on a ”.py” file. This brings up a context menu
with the options for this file. One of these is Edit with IDLE and that opens
the IDLE editor on the program. Macintoshes generally don’t have 3-button
mice. On Mac you <CTRL>-click (hold down the Control or <CTRL>-key while
clicking the mouse button) on the file. This time there are three choices: IDLE,
Build Applet and Python Launcher. One of these will be labeled Default, which
means that it is the choice that will apply if you just click normally on the file.
You want to choose IDLE here.

To change the default action on a Magc, select any Python (.py) file and go
to the File menu of the Finder. This has an option Getlnfo, which brings up a
window with various items related to this file. One of them is Open With, which
has the IDLE, Build Applet and Python Launcher options. You can either change
the default for this file, or if you select Change All you can change the default
for all .py files.

1.4. EDITING PROGRAMS WITH IDLE 15

1.4 Editing Programs with IDLE

IDLE will format programs for you in ways that make them easy for both you
and the Python system to understand, but you have to let it do its work. Here
are a few tips:

e Be careful with horizontal spaces. As we will see in the next few chap-
ters, Python is very particular about indentation; the way a program is
indented affects the way it runs. If two lines are supposed to have the
same indentation, as in the last two lines of

if x < 10:
result = "small”
print(" That number is small.”)

it is not enough to make them look the same on the screen — their inden-
tations need to consist of the same characters (either spaces or tabs). I
recommend using the tab key for all indentation.

e Be generous with vertical spaces. Python ignores blank lines in your code.
It helps the reader of your programs (especially you) if you use blank
lines to separate the functional parts of your programs. As our programs
become more complex, they will consist of more and more short functions,
each of which is independent of the others. Use an extra blank line to
separate functions. That helps to make the structure of the program
easier to understand, and the overall program easier to read. As we will
say many times, a program that is easy to read is much more likely to be
correct than one that is hard to read.

e Beware of long lines. Because Python uses indentation as a functional
part of the language, complex portions of code tend to be shifted to the
right in the IDLE window. For some reason the designers of IDLE did not
give it a horizontal scrollbar. If you have a line of code that extends to the
right of your IDLE window, you must put the cursor on this line and use
the right arrow key to move the cursor to see the rightmost portions of
the line. This is both awkward and mistake-prone. You can split the line,
but you must be careful how you do it because white space is meaningful
in Python. If you end a line, Python will probably think you are ending
the statement it contains and, if this isn’t a complete statement, give you
an error message. To avoid this, put a "\" character at the end of the
line you will continue. To the system this says ”Treat the next line as a
continuation of the current one.” For example,

print("Dear %s. Please send $%d” to me soon.” \
%("Mom" , 20))

Without the \ character at the end of the first line this code would not
work.

16 CHAPTER 1. INTRODUCTION

e Write programs non-linearly. Only the very simplest programs are written
from top to bottom. Usually I write a small portion of code, then see what
supporting code it needs and write that above the original chunk of code.
Over the course of writing a complete program I tend to move all over the
file. IDLE gives you a nice editor that makes it easy to move around the
file; make use of it.

e Write small chunks of code at a time. Beginners want to write a com-
plete program and then have a horrible time trying to debug it. More
experienced programmers write a bit of a program, test it out, then write
another piece of the program and test it out and repeat this until the
program is finished. In an integrated system like IDLE and the Python
shell, it takes only a few seconds to test a program and if the new code is
only a few lines it can’t take long to debug. When you are in a hurry to
be done it always feels like it will be faster to just write all of the code,
but in the end it will be slower and more frustrating to do it this way.
Programming is one area where taking your time and being careful and
methodical actually save you time.

IDLE colors

The IDLE editor makes programs colorful. This is not just for the artistic value;
the colors are meaningful. Here is how the colors are used by default; if you
wish you can change the color assignments in the Configure IDLE option of the
Options menu of IDLE.

orange Keywords: words that are meaningful in Python, such as ”if”, ”def”,
and ”while”.

green Strings: text in quotes, such as "bob”.

red Comments: text for the human reader of the program that ignored by the
computer.

blue Names of things being defined.

Chapter 2

Simple Python Code

In this chapter we will look at the basic elements of programming in Python.
There isn’t a lot you can do without the control structures of Chapter 3, so we
will move quickly through this material. You might want to review this after
you have read Chapters 3 and 4. Though none of this is difficult, there are some
subtleties here that you might not appreciate unil you have some programming
experience.

17

18 CHAPTER 2. SIMPLE PYTHON CODE

2.1 A first program

In this chapter we will begin to write programs using the simplest elements of
Python. There are several factors that make this a complex, and sometimes
frustrating, process. One is that programs are more formal than human com-
munication, and everything in a program needs to be correct in order for it to
run. If you are just starting to learn a new human language, such as Spanish,
you might put a verb in the wrong tense or use the wrong gender for a noun
but people will still know what you mean. Computers aren’t as good as people
at finding the essence of what you are saying. If your program isn’t completely
correct, the computer will not run it. Fortunately, many of the formal details
of programs are the same in program after program; you can use them almost
like incantations to achieve what you want.

Another factor that makes programming complicated at the start is that we
want to eventually write complex programs that do useful things. In this chapter
we are trying to lay the groundwork for a full understanding of programming,
so at times we will use techniques that are more complex than necessary for the
task immediately at hand, but that use a style that will be easy to adapt later
on.

There are four primary types of instructions in Python, and in most pro-
gramming languages: definitions, expressions, statements and comments. An
ezecutable instruction does something. For example, the line of code x = 3 + 4
adds together the numbers 3 and 4 and stores the result in variable x. There
are two kinds of executable instructions. An expression represents a value, such
as 3+4. A statement does something, such as print x. A definition creates
something and gives it a name for later use. Nothing appears to happen when
you execute a definition, but the system’s memory is modified to include the
newly defined object. Finally, a comment is a note for human readers of the
program. Comments are ignored by the computer; their sole purpose is to help
humans understand the program. Comments in Python start with the symbol
and extend to the end of the line.

The Python system starts reading your program at the top; it reads and
executes statements until it gets to the end. Of course, all that happens when
it executes a definition is that its memory is modifed to include the new object.
Consider Program 2.1.1:

2.1. A FIRST PROGRAM 19

This asks for the user’s name
and prints a greeting.

def main():
name = input("Who are you? ")
if name = 'bob':
print("Bob rules!”)
else:

print(" Hello,
print(" Goodbye.")

+ name + "1")

main ()

Program 2.1.1: Our first program

This starts with two lines of comments:

This asks for the user’s name
and prints a greeting.

Anyone reading the program can tell the program’s purpose from these two
lines without reading any further. The program then has a definition:

def main():
name = input("Who are you? ")
if name = 'bob':
print("Bob rules!”)
else:
print("Hello, " + name + "!")

print(" Goodbye.")

main ()

This defines an object called main(). Objects like this that have parentheses
as part of their names are called functions. These are the one of the primary
building blocks of programs. Most of the programs we will write will have a
sequence of function definitions at the start. Note that there are many lines
indented underneath the line

def main():

These lines make up the body of the function - the instructions to be executed

when the function is used. Python is different from most programing languages

in that it uses indentation as a structural part of programs. Other languages

uses braces, such as { and } or words such as begin and end to group together

statements. Python’s use of white space (space characters and tabs) makes it

very visual; many people think this makes Python programs easier to read.
The final line of Program 2.1.1 is

20 CHAPTER 2. SIMPLE PYTHON CODE

main ()

This invokes, or calls, function main() that was defined earlier. The system calls
a function by executing the statements in its body one at a time. First, we have

name = input("Who are you? ")

This is complex. The string ”Who are you? ” is printed and the system halts
and waits for the user to type a line of text that is terminated by the Return
key. Whatever the user types is given as a string to the variable name.

The next instruction in main() is an if-statement:

if name = bob ":
print("Bob rules!”)
else:
print("Hello, " + name + "!")

This compares the value stored in variable name to the string bob '. If
they match, the system prints Bob rules . If they don’t match it prints the
word Hello , followed by the value in variable name followed by an exclamation
point.

The last line of function main() just prints the word " Goodbye.” This line is
not part of the ifstatement and so it is executed regardless of what name the
user enters. Note how Python’s use of indentation helps us to understand the
functionality of the program. If we indented the last line, so that main() reads

def main():
name = input("Who are you? ")
if name = 'bob':
print("Bob rules!”)
else:

print(" Hello, + name + "1")
print (" Goodbye.")

then, in the case where the user enters bob the system will only print " Bob rules!”
and if the user enters '"Mary’ the system will respond

Hello, Mary!
Goodbye.

We run this program by opening it in a Python window inside Idle, or else
typing it into a new file in Idle. One of the menus in this window is called Run,
and there is an option in this menu called Run module F5 Either select this
option or else press the F5 key to run the program. Here is a typical run, with
what the user prints in bold and what the user types in normal font:

Who are you? Mary
Hello, Mary!
Goodbye.

2.1. A FIRST PROGRAM 21

Program 2.1.1 has a structure that we will use over and over. Until we dis-
cuss functions more completely in Chapter 5, all of our programs will have the
following form

comment on what the program does
def main():

main ()

The use of main() here as the function that holds the body of the program
goes back to the C language, which required a function called ain()} to fill this
is; our programs would run just as well with the structure:

def stuff():

stuff ()

We will use the name "main" as a concession to tradition.

Note that Program 2.1.1 is more complex than it actually needs to be.
Python is a scripting language, which means that it can execute sequences of
statements without an encompassing program. Program 2.1.2; below, runs in
the same way as Program 2.1.1. For very short programs this can be useful, but
as soon as the programs gain a little complexity this style becomes very hard to
follow. For this reason we will stick to the style of Program 2.1.1 for all of our
subsequent programs.

This asks for the user’'s name
and prints a greeting.

name = input("Who are you? ")
if name = 'bob ":

print("Bob rules!”)
else:

print("Hello,
print(" Goodbye.”)

+ name + "7)

Program 2.1.2: Our second program

So far, programming should look easy. Programming is a great spectator
sport. It is easy to nod your head and say ”Yes, I understand.” as long as
someone else is doing the coding. When you start writing your own programs
matters become a little more complex. In the next section we will look at some

role .

Python doesn't care what the

22 CHAPTER 2. SIMPLE PYTHON CODE

of the mistakes you might make, and how the system will respond to these
mistakes.

2.2. WHAT CAN GO WRONG? 23

2.2 What can go wrong?

Let’s look again at the first program we wrote in Section 2.1 and see what
happens if we don’t get it quite right. First, suppose we aren’t consistent with
our indentation:

This asks for the user’'s name
and prints a greeting.

def main():
name = input("Who are you? ")
if name = 'bob':
print("Bob rules!”)
else:

print("Hello, " + name + "!")

main ()

Program 2.2.1: Bad Indentation

In program 2.2.1 the line name = input("Who are you?") is not fully in-
dented. If you write a program inside Python’s own editors it is pretty easy
to avoid indentation problems, but if you write a program in a standard text
editor (such as Notepad in Windows) mistakes like this can crop up. If we run
this program in the Python system, we get the following error alert:

There's an error in your program:
unindent does not makch any outer indentation level

04 |

If we look at the code in IDLE, a portion of the line following the bad line is high-
lighted. Since the error message talks about indentation levels, it doesn’t take
too long to realize that there is a problem with the indentation somewhere, and
if you look carefully at the code knowing that there is an indentation problem,
the mistake isn’t hard to spot.

Don’t expect too much from error messages. Error detection in programs
is an art form that is still far from perfect. It is fairly common for the system
to flag the line after the one that actually contains the mistake. In this case
the system misinterpreted our intention. ”unindent does not match any outer
indentation level” means that the system thought we were ending the main()
function but failed to move to the previous indentation level, as in

24 CHAPTER 2. SIMPLE PYTHON CODE

def main():
name = input("Who are you? ")
if name = "bob":

That, of course, is not what we wanted, but it is close enough to allow us to
find the real problem.

The Python error detection system stops as soon as it finds one problem.
This makes error correction a cyclic affair: we fix one bug, try to rerun the
program, fix the next bug that appears, and so forth. Experienced program-
mers often prefer systems that list all of the errors at once; it is faster to do
multiple bug-fixes in one iteration than to handle them serially. The problem
with systems like this is that one error can cause a whole sequence of errors. As
we saw above, our improper indentation caused the Python system to think we
were doing something completely different than we actually intended. If it had
continued with the program it would have flagged the next line as being im-
properly indented (according to what it thought we intended) and these errors
would continue through the rest of the program. It takes experience to look at
a cascade of errors and determine what needs to be fixed. Python’s system is
much easier for beginners to use. It does have one offputting result. Each time
you fix a bug it is the only bug you know about, so you believe the program
will run correctly. This leads to a cycle of overconfidence followed by feelings
of frustration. One way to minimize this is to keep debugging your program as
you write it, so that with each run only a small piece of the code is new. We
will discuss this at more length in a later section.

What happens if you forget a comment sign, as in the second line of the
following program?

This asks for the user’'s name
and prints a greeting.

def main ():
name = input("Who are you? ")
if name = 'bob':
print("Bob rules!")
else:

print(" Hello,
print(" Goodbye.")

+ name + ")

main ()

Program 2.2.2: Bad Comment

This time we get the cryptic error message:

2.2. WHAT CAN GO WRONG? 25
There's an error in Your progranm:
irvealid svnbax

K |

This doesn’t say much of anything. ”invalid syntax” means that your pro-
gram isn’t constructed according to the grammar rules of Python. Fortunately,
if we look at the code in Idle it shows us the problem. The second line of the
code is highlighted:

and prints a greeting.

Now we know that there is a syntax problem with the second line, starting
with the word and Of course, since this line is supposed to be a comment the
system shouldn’t be checking its syntax; this ought to lead us to realize that
the problem is our missing comment symbol.

Many Python constructs use colons to separate various parts of a construc-
tion. An easy typing mistake is to leave off one of these colons. We do this in
the following program, where the colon on”else” is omitted.

This asks for the user’'s name
and prints a greeting.

def main():
name = input("Who are you?")
if name = 'bob':
print("Bob rules!")
else

print(" Hello,
print(" Goodbye.")

+ name + " 1")

main ()

Program 2.2.3: Omitted colon

When we run this program the system again reports a syntax error:

26 CHAPTER 2. SIMPLE PYTHON CODE
| Syntaxerror x|
There's an error in Your program:
unindent does not match any outer indentation level

2K |

Nothing here points to a missing colon as the problem, but if we look at
the code the else line is highlighted. For someone who is familiar with how if-
statements are constructed in Python (we will look at this in detail in Chapter
3) it is a small step to realize that the problem is a missing colon.

As a final example for this section, consider Program 2.2.4:

This asks for the user’'s name
and prints a greeting.

def Main():
name = input("Who are you? ")
if name = 'bob':
print("Bob rules!”)
else:

print(" Hello,
print (" Goodbye.")

+ name + "1")

main ()

Program 2.2.4: Case-sensitivity

In this program we define a function called Main() and at the end call a func-
tion called main(). Python, like most programming languages, is case-sensitive.
Upper case letters are different from lower-case letters with the same name, so
Main() and main() are different functions. If we try to run this program we four
lines of red ink:

Traceback (most recent call last):

File ”C:\ Documents and Settings\bob\My Documents\book\Program2.
line 13, in <module> main ()

NameError: name ’main’ is not defined

Don’t be put off by the red ink or verbose text. The last two lines of this
message have everything you need to know. On line 13 of the program:

main ()

2.2. WHAT CAN GO WRONG? 27

there is a problem because the word main isn’t defined. Of course, it should
have been defined in the definition at the top of the program, so as soon as we
look at that definition we see that it defines Main() and not main(). Nothing
is highlighted in your program because the system can’t tell if you misspelled
the name of the function in its definition or in its call, but this error message
should be sufficient for you to figure out what the problem is and to correct
your spelling.

28 CHAPTER 2. SIMPLE PYTHON CODE

2.3 Variables and types

A paragraph in English is a sequence of words written according to the grammar
rules of English so that it is meaningful. The words of the paragraph are either
standard words of English, which you can find in a dictionary, or names of
objects, which can be almost anything, such as ”Caerdydd” or "2Pac”. The
situation in programming is very similar. A program is a sequence of words and
symbols written according to the grammar rules of a programming language (in
our case the rules of Python) so that it can be executed on a computer. The
words of the program are either the keywords of the language, such as ”def”,
7if” and ”else”, or they are the names of objects that are constructed in the
program, or they are textual data.

Program 2.1.1 showed two ways that a program can make named objects.
The line

def main():

starts the definition of a function called main(). We could name this function
anything else. For example, in the following program the main function com-
putes the area of a rectangle, so it is called area() rather than main().

This asks for the dimensions of
a rectangle and computes its area.

def area():
print(" This finds the area of a rectangle.”)
L = eval(input("Enter the length: "))
W = eval(input("Enter the width: "))
print("The area is ", LsW)

area ()

Program 2.3.1: The top-level function is called area()

Although the Python language allows this, as we said in Section 2.1 our con-
vention is to always name the top-level function of our programs main().

Definitions are one way to assign a name to an object. Program 2.3.1 illus-
trates the other common way to make a named object. The line

L = eval(input("Enter the length”))

creates a variable called L, and gets its initial value from input from the pro-
gram’s user. In any programming language a wvariable is a name attached to a
location in memory where we can store data. In many languages, including both
C and Java, variables must be declared, or registered with the program before

2.3. VARIABLES AND TYPES 29

they can be used. When a variable is declared the programmer must say what
kind of data it will hold so that the right amount of memory can be assigned
to it. Python does things differently. In Python a variable is created when we
attach a value to a name; no declaration is necessary. Furthermore, we can
change the kind of data attached to a variable at any point in the program; the
system determines from usage what kind of data a variable holds and adjusts
its internal memory accordingly. This is very convenient, but it is not without
its problems, which we will discuss below. For now, just focus on the fact that
we create a variable by assigning a value to a name.
Finally, note that in Program 2.1.1 we used the input function by itself:

name = input("Who are you? ")
while in Program 2.3.1 we also invoke the eval function:
L = eval(input("Enter the length: "))

The input function always returns a string. If this is what we want, for example
if we expect the user to enter a name, we don’t need to do anything to it; we
just pass this string on to whatever variable it is being assigned to. On the
other hand, if we expect the user to enter a number we need to translate the
string returned by input into a numerical representation. That is the role of
the eval function — it takes a string and evaluates it into its natural Python
representation. For more on this see section 2.6.

Assignments

The = symbol is used for assigning a value to a variable. The variable receiving
a value is always on the left side of this symbol, and on the right side is an ex-
pression of the value being assigned. In Program 2.3.1 there are two assignment
statements:

L = eval(input("Enter the length: "))
and
W = eval(input("Enter the width: "))

The first of these creates variable L and reads a value from the user to put
into L. The right side of an assignment statement can be anything that computes
to a value. For example,

Z1 = 23x%5
and
Z2 =1 + eval(input("Enter a number: "))

are both valid statements. The first of these puts the number 115 into variable
Z1; the second reads a number from the user, adds 1 to this value, and stores
the result in variable Z2. In Program 2.3.1 we could introduce a variable that
holds the area of the rectangle as follows:

30 CHAPTER 2. SIMPLE PYTHON CODE

L = eval(input("Enter the length: "))
W = eval(input("Enter the width: "))
A = LW

print(A)

Sometimes we need to increase the value of a variable. For example, in a
predator-prey simulation we might have a variable foxCount that represents the
current number of foxes. If a new fox is born, we need to add one to this count.
Here is a line of code that does this:

foxCount = foxCount + 1

When assignment statements are evaluated, the right side is always computed
first, and that value is given to the variable on the left side. This statement takes
the current value of variable foxCount, adds 1 to it, and that result becomes the
new value of foxCount. If the old value of foxCount was 97, after this statement
is excuted its new value will be 98.

There is a shorthand notation for updating the values of variables. The
statement x += a is short for x = x + a: the value of a is added to variable
x. Similar definitions apply for —=, *= and /=, though += is by far the most
commonly used of these notations.

Names

Every program you write will have variables and functions, and you will need to
come up with names for these objects. Python doesn’t care what names you use:
as far as the Python system is concerned pq23x is as good a name as FoxCount.
For human readers names make a difference. You are more likely to write
programs that work if you use good names. There are many different naming
conventions, and unless you are working in a group programming environment
where everyone needs to use the same conventions, it doesn’t really matter which
conventions you use. Here are some guidelines that will help you write successful
programs:

e Names are composed of letters, digits, and the underscore character. All
names in Python must start with a letter. 1x is not a legal name, though
x1 is.

e Use names that have some meaning for your program. You could use x to
represent the width of a rectangle, but W, width, and rectangleWidth are
all better choices.

e Use names composed of English words. In a program that deals with
rectangles and circles, you could use Al to represent the area of a rectangle
and A2 to represent the area of a circle, but is is easy to forget which is
which. A better choice is to use rectangleArea and circleArea. When
you want to use more than one English word in a name, push the words
together and capitalize the first letter of each word (or the first letter

2.3. VARIABLES AND TYPES 31

of each word after the first). Another option is to use underscores to
separate words, as in rectangle_area. I tend to use capitalization rather
than underscores because I find capital letters easier to type, but you
might make a different choice.

e Avoid cute names. It might seem fun to give variables the names of your
friends, but a few days later you are likely to forget which name goes
with which object. If you use descriptive names you are more likely to
finish your programs early, and then you can spend quality time with your
friends.

e Be consistent with capitalization. Some of the most common bugs are
introduced by capitalizing a variable one way in one part of a program
and a different way in another part of the program, and so creating two
different variables. Some people use a convention that function names all
start with a capital letter and variables names start with a lowercase letter.
With this convention prime might be a variable that represents a prime
number while Prime() is a function concerned with prime numbers. You
arent likely to confuse a variable with a function (though it occasionally
happens); the real point of this convention is that if you have a variable
that represents a part number in an inventory program you know it will
be spelled partNumber and not PartNumber.

Example 1. As an illustration of variables and assignment statements, here
is a common situation. We have variables x and y that have values. We want
to interchange these values give x the value currently in y, and y the value
currently in x. The following code doesnt work:

X =Y

y = X
The statement x = y results in the old value of x being lost; after this x and y
have the same value. For example, if we start with x having the value 23 and y
having 45, then after x = y both will have the value 45. The statement y = x
then has no effect; after it both variables will still have the value 45. There is
no way to do this with just two variables; to make it work we need to introduce
a new variable to hold one of the values for us. Here is code that does work:

oldX = x
X =y
y = oldX

The variable oldX holds onto the original value of x, so this value is still around
after we make the assignment x = y. We can then use this variable to give the
right value to y. Note that order matters: the following code has the same three
assignment statements, but it doesnt work:

X =y
oldX = x
y = oldX

32 CHAPTER 2. SIMPLE PYTHON CODE

Try an example, such as starting values 23 for x and 45 for y, and convince
yourself that this code doesnt interchange the values of x and y.

Types

Computers can manipulate many different kinds of data. In some problems
the essential data is numeric; other problems need textual information and still
others need complex data, such as the position and orientation of planets in their
orbits around the sun. Different kinds of data allow for different operations: we
can multiply two integers, but it doesn’t make sense to multiply two English
words. A typeis a collection of values together with the basic operations that can
be performed on these values. For example, the Integer type has the values 0, 1,
-1, 2, -2, 3, -3, and so forth, together with operations like addition, subtraction,
multiplication and division. You need to be aware of the types of the data you
have stored in your variables, and to use the variables consistently according to
these types.

Python has several basic types of data, together with some ways to build
more complex types from these primitive types. The four most common ele-
mentary types are:

e Integers. These have whole numbers as values and a wide variety of arith-
metic operators for manipulating them.

e Floating Point numbers, sometimes called ”floats”. These have decimal
values: 3.14159, -3.5, or 6.0. Again, there is a wide variety of arithmetic
operators available for working with floats. Note that the floating point
number 6.0 is different from the integer number 6 because they are el-
ements of different types. They are also represented differently in the
computer’s memory; using one when you mean the other can get you into
trouble.

e Strings. These are sequences of individual characters, such as” Scooby Doo”
or 'Plan 9 From Outer Space’. We write strings inside quotation marks
(either single quotes or double quotes). Strings also have their own oper-
ations, which we will discuss later.

e Booleans. There are only two Boolean values: True and False. Note
that they are written with capital initial letters: true is not a Boolean
value. They are also not strings: True and " True" are completely different
objects. You might not see at the moment why Booleans are useful, but
starting with Chapter 3 we will make frequent use of them. By the way,
the unusual name ”Boolean” is a tribute to George Boole, a 19th Century
English mathematician who was one of the original developers of symbolic
logic.

The next two sections discuss numeric types, then strings. In Chapter 3 we
will discuss the Boolean type. There is also a Complex Number type built into
Python, but we will not make use of it in these notes.

2.4. NUMERIC TYPES 33

2.4 Numeric Types

Integers

Integers are the most familiar of all the standard types. Any whole number
is an integer. Older computer languages, like C and Java, have limits on the
size of integer values due to the way they represent numbers internally. These
limits are large, around 2 billion, but occasionally we need numbers that are
larger than than these limits and this can create bugs in programs. Python has
no limit on the size of an integer value. For example, here is the number 100-
factorial (100!), which is the product of all of the integers between 1 and 100:
93326215443944152681699238856266700490715968264381621468592963895217
59999322991560894146397615651828625369792082722375825118521091686400
0000000000000000000000. This is a legitimate integer value in Python.
There are 7 standard arithmetic operators for integers:

Symbol Meaning Example | Result
+ Addition 345 8
- Unary: negation —(3+4) -7
Binary: subtraction 7T—3 4
* Multiplication 4x%7 28
/ Exact division 11/3 3.666667
12/3 4.0
// Whole division 11//3 3
12//3 4
Kok Exponentiation 2 % x4 16
10xx—1 0.1
% Remainder 11%3 2
12%3 0

Most of these need no explanation. It may surprise you that there are two
different division operators, but both are useful. The ”exact division” operator
/ gives the quotient of its two operands as a floating point number. The ”whole
division” operator gives the whole number of times its second operand can
be divided into its first operand. You have computed remainders before in
mathematics classes, but mathematicians don’t have a standard symbol for the
remainder operation; programming languages do.

The remainder operator % is used more than you might expect. Suppose
numbers x and d are integers. If x % d is 0, then d divides evenly into x. This
has many applications. For example, we can tell if a number x is even or odd by
checking x % 2; if this is 0 then x is even and if it is 1 then x is odd. Similarly,
if dayl and day2 are two different dates of the same month, then they fall on
the same day of the week if day1%7 is the same as day2%7. For example, I am
writing this on July 8, 2015, which is a Monday. July 15, July 22 and July 29
are also Mondays: 8%7, 15%7, 22%7 and 29%7 are all 1.

There is a rule in most programming languages, that an operation between

34 CHAPTER 2. SIMPLE PYTHON CODE

two integers results in an integer, while an operation between an integer and a
float is a float. This holds for all of Python’s operators except for exact division
/ and exponentiation where the second operand, the exponent, is negative. In
early versions of Python axxb wasn’t defined when b was negative, but negative
exponents are sufficiently convenient that the language designers finally relented
and allowed non-integer results.

Here is a table of comparison operators for integers. Each of these returns a
Boolean (True or False) value:

Symbol Meaning Example | Result
< Less than 3<5 True
5<3 False
> Greater than 3>5 False
5>3 True
<= Less than or equal to 3<=5 True

5<=5 True
5<=3 False
>= Greater than or equal to 3>=5 False
5>=5H True
5>=3 True

== Equal to (comparison, not assignment) 3==5 False
5==25 True
= Not equal to 3l=5 True
5l=5 False

Floating Point numbers

Floats are numbers that are not necessarily integers. They have a more complex
internal representation inside the computer (in binary) than integers do, and
there is not necessarily a perfect correspondence between decimal values and
floating point representations. For example, if you ask Python to compute
1.0/10, the result is not 0.1, but rather 0.10000000000000001. Of course, this is
close enough for most computational purposes, but it leads to some unexpected
results. If you ask the system whether 1.0/10 is 0.1, the answer is "No”. If
general, it isn’t a good idea to directly compare two floating point values. You
can ask whether they are close (say within 0.00000001), but don’t test them for
equality.

Floats have the same arithmetic operators and the same comparison opera-
tors as integers:

2.4. NUMERIC TYPES 35
Symbol Meaning Example Result
+ Addition 3.245 8.2
- Unary: negation -(3.444.5) -7.9
Binary: subtraction 7.0-3.9 3.1
Multiplication 4.2*5 21.0
Exact Division 12.6/3 4.2
11.0/3 3.6666666666
// Whole Division 12.6//3 4.0
11.0//3 3.0
ok Exponentiation 2%*3.6 12.125732532083186
% Remainder 11.0%3 2.0
10.5%3.3 0.6
< Less than 3.2<5.6 True
> Greater than 32>56 False
<= Less than or equal to 3.2<=5.6 True
>= Greater than or equal to 3.2>=15.6 False
== Equal to (comparison, not assignment) | 3.2 == 5.6 False
= Not equal to 321=5.6 True

When dividing decimal numbers we dont usually think of getting a ”remainder”,
but the definition for floats is the same as it is for integers: a%b is what remains
after we remove the largest possible integer multiple of b from a. One way we
might compute this for positive values of a and b is to repeatedly subtract b
from a until the result is smaller than b; that result is the remainder.

The print() function works with floats just as it does with integers. The
easiest way to control the number of decimal places printed with a float is to
use string formatting, which we describe in the next section. Similarly, input
works with floats just as it does with integers. Finally, the comparison operators
for floats are the same as those for integers.

Converting between types

Sometimes you have an integer variable that you want to change to a float, or
vice versa. There are several ways to achieve this. In Python you can use type
names like functions to convert values to these types. For example, if x has an
integer value, such as 23, and you want to get the floating point version of this,
23.0, you can get it as float(x). Similarly, we can get the integer version of a
floating point number x with int(x). This always rounds x towards 0: int(34.9)
is 34, and int(—34.9) is -34.

The Math library

The following table lists many functions that are available in the Math library
for Python. To use any of these you need to put the following line at the top of
your program:

from math import x

36 CHAPTER 2. SIMPLE PYTHON CODE

If you omit this line you will get an error message saying that the functions are
not defined.
Alternatively, you can include at the top of your program

import math
and prefix any item that you use from the library with "math.”, as in
area = math.pix(radius=*x2)

The idea here is that you can either import all of the names from the library
into your program or you can just import a link that allows you to refer to
objects in the library though the <library —name> dot notation.

2.4. NUMERIC TYPES

37

38 CHAPTER 2. SIMPLE PYTHON CODE
Symbol Meaning Example Result
The ceiling of x: the smallest whole num-
ceil(x) ber (still a float) greater than or equal to ceil(34.2) 35.0
X.
ceil(-34.2) -34.0
The floor of x: the Jargest whole number
floor(x) (still a float) less than or equal to x. floor(34.2) 34.0
floor(-34.2) -35.0
The absolute value of x: if x > 0 this is x,
fabs(x) o im0 Jﬂs N * * fabs(34.2) 34.2
fabs(-34.2) 34.2
This returns where e is the base of the
exp(x) nicural logarithm. 1 . . exp(2) 7.38906
This is the natural logarithm; some mat
log(x) books call it In(x). | | log(15) 2.70805
log(x, base) g;u: is the Togarithm of x with the given log(32, 2) 5.0
<
log10(x) This is log(x, 10). log10(100) 2.0
sqrt(x) The square root of x. sqrt(144) 12.0
This is the sine of angle x, where x must
sin(x) be measured in radians. If you want to sin(30) -0.988032
use degree measure, use sin(radians(x)).
sin(radians(30)) 0.5
This is the cosine of angle x, where x must
cos(x) be measured in radians. If you want to use cos(60) -0.952413
degree measure, use cos(radians(x)).
cos(radians(60)) 0.5
This is the tangent of angle x, where
x must be measured in radians. If
tan(x) you want to use degree measure, use tan(45) 1619775
tan(radians(x)).
tan(radians(45)) 1.0
asin(x) Egsxlzsk;fsi?ie, in radian measure, that asin(0.5) 0.523599
degrees(asin(0.5)) 30.0
This is th le, in radi , that
acos(x) haslsxlis i‘fsacrz)gsiiel.n radiatl measure, tha acos(0.5) 1.047198
degrees(acos(0.5)) 60.0
atan(x) E;Slsxlzﬁtesagﬁg’eg radian measure, that | 0y 0.785308
degrees(atan(1.0)) 45.0
This takes angle x, measured in radians, .
degrees(x) and returns the number of degrees in x. degrees(pi/4) 45.0
radians(x) This takes angle x, measured in degrees, radians(45) 0.785398
and returns the number of radians in x i
This returns which 1s the length of the
hypot(x, y) | hypotenuse of a right triangle whose other hypot(3, 4) 5.0
sides have lengths x and y.
pi pi is the ratio of the circumference of a pi 3.14159
circle to its diameter '
e e is the base of the natural logarithm. e 2.71828

2.4. NUMERIC TYPES 39

The Random library

Random numbers are very useful for games, simulations, and other sorts of
programs that we will write. Python has a very powerful, easy-to-use library
of random number utilities. To use any of these, you need to put one of the
following line at the top of your program:

from random import
import random

With the former line you can use the random functions directly; with the latter
line you need to prefix them with "random.”, as in random.randint(1, 6). The
following is a small selection of the functions that are available in this library.
All of these functions return floating point values.

Symbol

Meaning

Example

Result

random()

This returns a random floating poing
number between 0 and 1.

random/()

0.23145

uniform(a, b)

This returns a random floating poing
number between a and b.

uniform(3, 5)

4.21368

randint(a, b)

This returns a random integer between a
and b, possibly equal to either a or b.

randint(0, 1)
randint(0, 1)

seed(x)

This resets the starting point of the ran-
dom number generator based on the value
of x, which could be an integer, a floating
point value or a string. If you want num-
ber to be random but repeatable, set the
seed to the same value each time. This
doesnt return anything.

seed("bob”)

No output.

40 CHAPTER 2. SIMPLE PYTHON CODE

2.5 Strings

Computers were originally designed to ”compute” numeric values, but at a very
early stage scientists realized that they were just as useful for manipulating
textual information. The basic data type for working with text is called a
string. Python has a particularly strong set of operations for working with
strings. Here we will introduce the basic techniques for strings, which will allow
us to use text as well as numbers in our programs. In a later we will give a more
thorough coverage of strings and their capabilities.

There are three ways you can get strings into a program: they can be literal
strings in the program code, you can input them from the user or a file, or you
can compute them from simpler strings, even from individual letters. String
literals are sequences of characters inside quotation marks. You can use either
single quotes or double quotes, as long as you end the string with the same kind
of quote that you used to start it. For example " Four score and seven years ago”
and 'Barack Obama’ are two examples of string literals. Note that "example”
and 'example’ are exactly the same string. The string ", which contains no
characters at all (in other words, this string has length 0) is called the empty
string. Empty strings serve a role similar to 0. We often will build up strings by
starting with the empty string and adding letters. Note that in Python there is
no separate type for individual characters, such as the letter ’a’. Characters in
Python are just strings of length 1.

You can work with strings just as you work with numbers. Variables can be
assigned string values, as in

name = " Hieronymous Bosch”
Strings can be given values through user input, as in
name = input(” Enter a name: ")

The input() function doesn’t try to evaluate what the user types, it just returns
it as a string. Finally, you can build up a string value within a program, as in

name = " Marvin " + " Krislov”

There are many operators and functions for working with strings. One of the
most common is the length function len(s), which returns the number of letters
in string s. The + operator when used with strings gives the concatenation. or
pushing together, of the operands. For example, "multi" 4+ "media" is the new
string " multimedia”. Note that you can add two numbers with 4+ and you can
concatenate two strings with +, but it doesn’t make sense to use 4+ between a
string and a number.

Sometimes we want to grab the individual letters that make up a string. The
expression s[n] returns the letter in the nth position of string s. For technical
reasons Python, and most other computer languages, start indexing strings at
position 0. Thus, if test is the string "abcde”, then test [0] is the letter "a”,
test [1] is ”b”, and so forth. String x is indexed from position 0 to position
len(x)—1.

2.5. STRINGS 41

A slice of string s is a substring made up of contiguous letters in s. s[i:j] is
the slice of string s consisting of letters from position i to position j (including
i and not including j). Again, we start indexing positions with 0. For example,
if word is the string " together”, then word [2:5] is the string "get”.

The following table summarizes the most commonly used string operations.
In this table x, s, and t are strings, n, i, j, and k are integers.

42 CHAPTER 2. SIMPLE PYTHON CODE
Symbol Meaning Example Result
str(n) Returns the string version of n. str(23) 7237
len(s) Length of string s. len(”Katrina”) 7

s+t Concatenation of strings s and t. | "multi” + "media” | ”multimedia”
s*n or n*s | String s is repeated n times. "bob”*3 ”bobbobbob”
The nth letter of string s. Index- ., .,
s[n] . x ="abcde
ing starts at 0.
x[3] 7d”
The slice of string s, consisting of
the letters starting at position j
s[iz]] (indexing starts with 0) and ex- | type = "deciduous”
tending up to but not including
position j.
type[4:7] ”duo”
This is the slice of string s start-
si:] ing at position i and going to the | type = "deciduous”
end of s.
typel[4:] ” duous”
This is the slice of string s start-
. ing at the beginning of s and ex- 51 . ”
Ll tending up to but not including type = "deciduous
position j.
type[:4] " deci”
True if x is found in s and False
x in s otherwise. x can be either a single ’0’ in "bob” True
letter or a possible substring of s.
'd’ in "bob” False
False if x is found in s and True
x not in s | otherwise. x can be either a single ”0” not in ”"bob” False
letter or a possible substring of s.
’d’ not in "bob” True
If string s contains string x, this is
s.find(x) jche index of x’s starting. positio.n s = "abede”
in s. If s does not contain x, this
is -1.
s.find(7ed”) 2
s.find("x”) -1
Returns a string with the same
slower() | characters as s, but all in lower- s = "wHimseY”
case.
s.lower() "whimsey”
Returns a string with the same
s.upper() | characters as s, but all in upper- s = "wHimseY”
case.
s.upper() "WHIMSEY”
Returns True if s has at least one
s.islower() alphabet%c letter z.md all of the s = "bob”
alphabetic letters in s are lower-
case.
s.islower() True
Returns True if s has at least one
s.isupper() alphabgtic letter z.md all of the al- s — "OHI"
phabetic letters in s are upper-
case.
s.isupper() True

2.5. STRINGS 43

Strings in Python can’t be changed once they are created. For this reason
strings are called immutable. This doesn’t mean that a string variable can’t be
changed; it is only the string itself that cannot be altered. In this regard Python
strings are no different from numbers: you cannot change the number 23 to be
a different number. Some other languages have mutable strings. For example,
in Java if s is the string " picket” and we execute a statement s[1] = 'o’, this
changes string s to "pocket’. We can get the same effect in Python from the
code:

i

s = "picket”
s =s[:1] + "o’ + s[2:]

Note that rather than change a string, in Python we usually reconstruct it
and assign the new string to the old string variable.

The string comparison operators use the same symbols as arithmetic com-
parisons. Strings are ordered by the usual dictionary (alphabetical) ordering,
where a standard table of characters, called the ASCII table, is used to deter-
mine the ordering of individual characters. See the optional section on string
encodings, below, for more details about this table. Here is a table of the com-
parison operators:

Symbol Meaning Example Result
< Less than "bike” <7 car” True
> Greater than "bike” > 7 car” False

<= Less than or equal to "bike” <="car” True
Yecar” <="car” True

>= Greater than or equal to "bike” >="car” False
Ycar” >="car” True

== Equal to "bike” =="car” False
(comparison, not assignment) | "car” == "car” True

= Not equal to Ybike”! =" car” True
7ear”! =" car” False

String formatting

It is often the case that you want to print a line that is composed of text plus
values that are contained in one or more variables. For example, an averaging
program might have a variable average that contains the average, and a variable
count that holds information about the number of item that went into this
average. We might want to print all of this information on one line, such as:

7 items were found, with average 16.2.

To do this with string concatenation we would need to convert the numeric
variables into strings:

print(str(count)+"items were found, with average "+str(average)+".")

This works, but it is hard to read and easy to get wrong. String formatting is
a technique Python provides to simplify expressions like this. It is particularly

44 CHAPTER 2. SIMPLE PYTHON CODE

useful for print statements, but it can be used anywhere you need to make a
string out of values contained in variables.
A formatted string consists of two parts separated by a percent sign:

pattern % (values)

The pattern can have percent-fields that act as placeholders. There are three
such fields:

%d is a placeholder for an integer value.
%t is a placeholder for a floating point value.
%s is a placeholder for a string.

For each percent-field in the pattern, you need to give a corresponding value.
The values are a list, separated by commas, inside parentheses, such as (count, average)
If you have only one value you may omit the parentheses.

The averaging example above would be expressed as follows with formatted
strings:

print ("%d items were found, with average %f."%(count, average))

This is easier to read, and easier to write correctly.

Formatted strings have another advantage. You are allowed to supply a field-
width for each percent-field. This is very useful if you are trying to print data
in a table so that it comes out in columns. If, for example, you have numbers
that might need anywhere from 1 to 4 digits, printing them with a fieldwidth
of 4 or more will guarantee that they always occupy the same amount of space
in the output line.

For strings and integers the fieldwidth is a number that comes between the
%-symbols and the s or d symbol. If the fieldwidth is positive, smaller values
are right-justified; if it is negative they are left-justified. For example ”%5d”
means to print the integer value using at least 5 spaces, and to put the value at
the right edge of this field. ”%-5d” means to make the fieldwidth 5, and to put
the value at the left edge of this field. With floats the fieldwidth is a bit more
complex. ”%w.df” means to use a total fieldwidth of w, including d places after
the decimal point. For all of these fieldwidths, an omitted fieldwidth defaults
to 1.

Altogether, our averaging example would be formatted:

print("%d items were found, with average %.2f."%(count, average))

This means to print count using no more spaces than necessary, but to use 2
decimal places for average.

Here is another example, this time a complete program. We want to read in
a person’s name and age, and then print them out on one line. Program 2.5.1
does this. Note that we use eval() after the numeric input. Note also the use of
formatted strings in the print statement. name is a string and age is an integer,
so we use formats %s and %d formats for them.

2.5. STRINGS 45

This reads a person’s name and age,
then prints them on one line

def main():
name = input("Enter a name: ")
age = eval(input(” Enter this person’'s age: "))

print("%s is %d years old.” % (name, age))

main ()

Program 2.5.1: Names and Ages

Strings and encodings (optional)

Internally, all data inside a computer is represented by sequences of 0’s and 1’s.
A given sequence of bits could represent either a number or a string, depending
on how it is interpreted. Python lets us move easily between these two inter-
pretations. You don’t usually need to do this the mechanisms the language
provides for manipulating text usually make it unnecessary to do this. In case
you are curious, here are some details about how strings are encoded.

There are two built-in functions for working with the numeric encodings of
strings:
ord(¢) gives the numeric value of ¢, which must be a single character:
a string of length 1.
chr(n) gives the character corresponding to integer n.

For example, ord(’A’) is 65 and ord(’a’) is 97. Python uses a standard char-
acter encoding called the ASCII character set. "ASCII” stands for ” American
Standard Code for Information Interchange”. The ASCII encoding goes back
to the early 1960’s and has been the standard representation for text for many
years. The first 31 characters in this set are non-printing ”control” characters
for controlling line printers and other output devices. In the table below we list
all of the printing ASCII characters.

46 CHAPTER 2. SIMPLE PYTHON CODE

The ASCII Character Set

x | chr(x) x | chr(x) x | chr(x) x | chr(x) x | chr(x)
32 | space 51 3 70 F 89 Y 108 1
33 ! 52 4 71 G 90 Z 109 m
34 7 53 5 72 H 91 [110 n
35 # 54 6 73 I 92 \ 111 o
36 $ 55 7 74 J 93] 112 p
37 % 56 8 75 K 94 - 113 q
38 & 57 9 76 L 95 _ 114 r
39 ' 58 : 7 M 96 ‘ 115 s
40 (59 ; 78 N 97 a 116 t
41) 60 i 79) 98 b 117 u
42 * 61 = 80 P 99 c 118 v
43 + 62 A 81 Q 100 d 119 w
44 , 63 ? 82 R 101 e 120 X
45 - 64 @ 83 S 102 f 121 y
46 . 65 A 84 T 103 g 122 zZ
a7/ 66 | B 8% | U 104 & 123 | 1|
48 0 67 C 86 \4 105 i 124 |
49 1 68 D 87 W 106] 125 }
50 2 69 E 88 X 107 k 126 ~

You can see that this character set has some convenient characteristics: the
lower-case letters are all contiguous and the upper-case letters are too, though
the upper-case letters and the lower-case ones do not appear together. In fact,
all of the upper-case letters come before all of the lower-case ones. This ordering
is used when we alphabetize words in Python: unless we do extra work to avoid
this, anything that starts with an upper-case letter will appear before anything
that starts with a lower-case one.

Python uses ASCII encodings for strings when it is possible, because each
of the ASCII characters can be encoded in one byte (8 bits) of data. However,
Python also implements an extension of ASCII called /em Unicode that uses
two bytes per character. This allows for about 65,000 different characters. For
example, chr(9924) is a cute picture of a snowman while chr(9824) is the ”spade”
character from a deck of playing cards. If you run the code

for i in range(0, 20000):
print ("%d: %s” %(i, chr(i)))

you can see many of the options for this extended character set.

2.6. INPUT AND OUTPUT 47

2.6 Input and Output

We have already seen Python’s input(), eval() and print() functions. In this
section we will look at them with a little more care.

Input from the user

Python’s input() function is very basic. When it is called the system waits
for the user to type something and hit the Return key. When this is completed
the function takes whatever the user has typed, packages it into a string, and
returns it. It does not evaluate what the user has typed in any way. You can use
this function with no argument, in which case it just halts and waits for input,
or you can give it a string which it interprets as a prompt and prints before it
waits for the input:

name = input("Who are you? ")

I usually leave one blank space at the end of the prompt string (just before
the closing double-quotes) so the user’s input doesn’t run right up against the
prompt; it makes the input dialog easier to read.

The input() function will only get you a string. If you want something else,
you need to evaluate in some way the string that input() returns. The easiest
way to do this is with the eval() function. eval(input(<prompt>)) prints
the prompt, waits for input, and then tries to interpret the input as a Python
value. This is easy and straightforward if the user has entered a number, as in

length = eval(input(" Enter the length: "))

We will usually restrict our use of eval() to this situation: interpreting strings
as numbers. It is possible to evaluate more elaborate strings. The string ”[2,
4, 6, 8]” evaluates to a list with 4 elements. For more on lists, see Chapter 6.
The string 71, 2, 3” is evaluated as a tuple with 3 elements. Tuples are also
discussed in Chapter 6. The problem with trying to use eval(input()) for these
is getting the user to type in exactly the right format. The wrong format, such
as omitting the commas between the elements, will cause eval() to crash on the
input string.

One option for inputting compound data is to give the user a format and
then use the string method split () to separate it into fields that can be easily
evaluated. For example, suppose we want the user to enter a date. We might
signal the input with

dateString=input(” Enter a date in the form m/d/y: ")

We can then use the string split () method to divide the input into fields. split ()
takes one string argument that it regards as a separator, and it splits the string
into a list of fields determined by this separator. For example, if dateString is
”10/29/1929” then dateString. split (" /") is the list [717,729”, 71929”]. The
individual fields in this are still strings, but we can use the eval() function to
turn them into numbers. Here is a complete block of code that does this, giving
integer values to the variables month, day, and year.

48 CHAPTER 2. SIMPLE PYTHON CODE

dateString=input(” Enter a date in the form m/d/y: ")
datelList=dateString.split("/")
month=eval(datelist [0])

day=eval(datelist[1])

year=eval(datelist [2])

Printing

The print() function is used to make output appear on the console, the com-
puter screen. The simple statement

print (x)
causes the value of x to be printed. You can print multiple values with

print(x, y, z)

By default a single space is printed between each of the values. We will see
below how to change this default. The print() function also terminates its line
of output, so the code

print (" Marvin Krislov")
print (" Oberlin College")

results in

Marvin Krislov
Oberlin College

Again, we will see how to change this default. The full print() function is
print(<values >, sep=<separator >, end=<terminator>)

with all three fields optional. Here <values> is either a single value or a comma-
separated list of values, such as 23, 45. If the values are omitted, only the
end-string is printed. <separator> is any string we want to appear between the
values. For example,

print(23, 45, 58, sep="sxx")
will print
23%xx45%x%xx58

If there is only one value the separator is not printed at all. By default the
separator is a string consisting of one single space character: 7 7.

It is often convenient to build up a line of output through several calls to
print(). The end-string, or terminator, defaults to the newline character, which
in Python is written "\n". This is what causes print() to end the current line
and prepare to start a new line. If we change the end-string to something else
we stay on the same line after printing, so the next call to print() appears on
the same line. If we want to do this the most common value to use for the
end-string is the empty string, or "". For example, the following code

2.6. INPUT AND OUTPUT 49

print (" Marvin Krislov", end="")
print (" Oberlin College")

will print
Marvin KrislovOberlin College

Here is a simple example of how we might use these techniques to print a
table in nice orderly columns. The following code is a little redundant; we will
be able to do this much more simply after we see loops in Chapter 3.

print("%5d" % 123, end="")
print("%5d" % 5, end="")
print ("%5d" % 17, end="")

print("%5d" % 444, end="")
print ()
print("%5d" % 11, end="")

print("%5d" % 9, end="")
print("%5d" % 123, end="")
print("%5d" % 3, end="")

print ()
print ("%5d" % 422, end="")
print("%5d" % 73, end="")

print("%bd" % 12, end="")
print("%5d" % 9, end="")
print ()

This prints

123 5 17 444

11 9 123 3
422 73 12 9

50 CHAPTER 2. SIMPLE PYTHON CODE

2.7 Exercises

Write a complete Python program to solve each of the following problems. Use
formatted strings to make nice output statements. Note that a few of these
require if-statements. Well discuss these statements in detail in the next chapter;
for you you might look at program 7?7 for an illustration of if-statements.

2.1. Write a program that asks the user to enter two numbers and then prints
the product of those numbers. Here is a typical run of the program:

Enter a number: 23
Enter another number: 45
23 x 45 is 1035

2.2. Write a program that asks the user to enter a string, and then reports the
number of letters in that string. Here is a typical run:

Enter a string: Ask not what you can do for your country.
That string has 41 letters.

2.3. Write a program that asks the user to enter one number. The program
should then say if that number is even or odd. Remember that a number
x is even if x%?2 is 0, and odd if x%?2 is 1. Here is a a typical run:

Enter a number: 23
23 is an odd number.

Here is another run:

Enter a number: 34
34 is an even number.

2.4. Write a program that asks the user to enter two numbers and then prints
the smaller of those numbers. Here is a typical run:

Enter a number: 34
Enter another number: 23
The smaller of those is 23

2.5. Redo program (2.4), but with three numbers. You will have to do more
logic to figure out which is the smallest number:

Enter one number: 23

Enter another number: 16
Enter yet another number: 45
The smallest of those is 16

2.6. Write a program that inputs a non-negative integer as a number of cents
and prints that value in the standard dollars-and-cents format. For exam-
ple, with input 405 the output should be $4.05; for 23 the output should
be $0.23, and for 1900 the output should be $19.00.

Chapter 3

Control Structures

Control structures determine the order in which the statements of a program are
executed. They are the most fundamental building blocks of programs. It can
even be shown that in a programming language with conditional statements,
loops, and assignment statements (and nothing else) one can write any program
that can be written in any language. Control structures are all that you really
need. In this chapter we will look at control structures that are common to
most programming languages in wide use, including if-statements, while-loops
and for-loops.

o1

52 CHAPTER 3. CONTROL STRUCTURES

3.1 If-statements

An if-statement is used to create conditional code: code that is executed if
some condition is true, and not executed if it isn’t. There are several versions of
the if-statement; all of these have the meanings you would expect from similar
usage in English.

if <condition >:
statement_block

If the condition is True the statement_block is executed; if the condition is False,
the statement_block is ignored. The statement_block is any Python code indented
inside the if-statement.

if <condition >:
statement_block_1
else:
statement_block_2

If the condition is True then statement_block_1 is executed; if the condition is
False then statement_block_2 is executed. The statement_block_1 is any code in-
dented between the if and the else. The statement_block_2 is any code indented
under the else.

if <condition_1 >:
statement_block_1

elif <condition_2 >:
statement_block_2

elif <condition_3 >:
statement_block_3

else:
final_statement_block

The conditions are evaluated one at a time, starting from the top. If any of
them evaluate to True the corresponding statement_block (the group of state-
ments indented under the condition) is executed and then we leave the entire
statement. If none of the conditions are True then the final_statement_block

3.1. IF-STATEMENTS 53

is executed. Note that elif is just an abbreviation for else if. In all of these

statements the conditions are anything that evaluates to True or False. We call
such expressions Boolean expressions; the next section has more details about
them. The statement blocks contain any valid Python statements.

This is much simpler than it might appear. Consider, for example, the
following program. This asks the user to enter two numbers, and says which of
the numbers is the larger one and which is the smaller.

This asks for two numbers and
prints them out in order.

def main():
x = eval(input("Enter a number: "))
y = eval(input("Enter another number: "))
if x = vy:
print (" Those numbers are the same.")
elif x < y:
print ("%d < %d” % (x, y))
else:

print ("%d < %d” % (y, x))

main ()

Program 3.1.1: Example of an if-statement

When you are writing a program using conditional statements, keep in mind
that you don’t know which blocks will be executed unless you know what the
user input will be. You can get into trouble if you create variables inside some
branches of an if-statement and not in others. Consider the following code:

x = eval(input(” Enter a number: "))
if x < 10:
size = "small”

print(size)

If the user enters a number that is less than 10 this prints the word "small”.
However, if the user enters a number that is 10 or larger the variable size is
never created and so you will get an error message for the unknown varible
size when it gets to the print-statement. One way to correct this is to define
variable size outside the if-statement, so it will exist in any case:

size = "large”
x = eval(input(” Enter a number: "))
if x < 10:

54 CHAPTER 3. CONTROL STRUCTURES

size = "small”
print(size)

Alternatively, you can put an else on the if-statement to define size in case
the condition is False:

x = eval(input(” Enter a number: "))
if x < 10:

size = "small”
else:

size="large"

print (size)

When you have a chain of if-statements, as in if-elif-elif ..., remember
that you only get to the lower conditions if all of the upper conditions fail. You
can make use of this to simplify the conditions. For example, suppose we want
a program that takes a number and says how many digits it has. Program 3.1.2
does this for numbers up to 4 digits long.

This asks for a number and reports how
many digits it contains.

def main():
x = eval(input(” Enter a number between 0 and 9999: "))
if x < 10:
digits =1
elif x < 100:
digits = 2
elif x < 1000:
digits = 3
else:
digits = 4

print ("%d has %d digits.” % (x, digits))

main ()

Program 3.1.2: Compound if-statement

Note that by the time we get to the condition
elif x < 100:

we already know that the condition x < 10 has failed, so if x is less than 100 it
must have exactly 2 digits. If would be correct, but unnecessarily complicated
to write this condition as

3.1. IF-STATEMENTS 55

elif x >= 10 and x < 100:

By carefully analyzing a situation, it is often possible to simplify conditions
in your code and thus make your programs easier to read and easier to write
correctly.

We finish this section with one more example, this time computing leap
years. We will make use of this code for several programs in subsequent chapter

Example The Julian Calendar, introduced by Julius Caesar in 46 B.C., had
leap years occurring every 4 years. This equates the tropical year, the span from
one point in the cycle of the seasons to the same point the following year, to
365.25 days. This is slightly too long, and over the centuries the Julian calendar
grew out of synchronization with the natural seasons. In 1582 Pope Gregory
XIII created the Gregorian Calendar, which differs from the Julian Calendar
only in the way it computes leap-years. The Gregorian calendar was gradually
adopted throughout Europe and most of Asia. Here is its leap-year algorithm:

A year is a leap year if it is divisible by 4, unless
it is also divisible by 100, in which case it is not a
leap year unless it is also divisible by 400.

According to this algorithm, the year 1900 was not a leap year because it
is divisible by 100 and not by 400, but the year 2000 was a leap year. This
puts the length of the tropical year at 365.2425, which is very close to current
observations. Our task is to write a program that asks the user to specify a
year; the program will say whether or not this year is a leap year.

The way we stated the leap-year algorithm is not very helpful; the ”unless”
expressions don’t translate easily into code. For our program we will reformulate
the algorithm, taking the most specific conditions first. This is often a useful
strategy. We express the most specific conditions first because we know what
the answer is if those conditions are met.

For our program the conditions are:

e the year is divisible by 4
e the year is divisible by 100
e the year is divisible by 400

The most specific of these is being divisible by 400, so we start there: if the year
is divisible by 400 it must be a leap year. We can use our remainder operator %
to check for divisibility: a year is divisible by 400 if year % 400 == 0. Rather
than sprinkling print statements throughout the code, we introduce a boolean
varible isLeap that becomes True or False in the various conditions of our if-
statement. At the end we use this variable to print out whether the year is a
leap year.

The remaining cases of the analysis are similar. Program 3.1.3 shows the
resulting code for this.

56

CHAPTER 3. CONTROL STRUCTURES

This reads a year from the user and
says whether this year is a leap—year.

def main():

year = eval(input(” Enter a year: "))
if year % 400 = 0:

isLeap = True
elif year % 100 = 0:
isLeap = False

elif year % 4 = O0:
isLeap = True
else:
isLeap = False

if islLeap:

print ("%d is a leap—year.” % year)
else:

print("%d is not a leap—year.” % year)

main ()

Program 3.1.3: Determining leap years

3.2. BOOLEANS o7

3.2 Booleans

The Boolean data type consists of just two values: True and False. In Python
this is implemented as a sub-type of the integers, where 0 corresponds to True
and any non-zero value corresponds to False. You can actually use integer
operations on Boolean values if you choose (such as True + False), but this will
just make your programs harder to read. The most common ways to produce
Boolean values is through the comparison operators (such as < or ==), and
through the membership search operations on strings and lists.

Sometimes you need to build compound conditions out of simpler ones. For
example, if you want to check that a number x is between 1 and 10, you can do
so with

if x >>= 1 and x <= 10:

In this example we took two complete Boolean conditions and connected them
with the operator and.
There are three Boolean operators: and, or, and not.

Symbol Meaning Example Result

x and y is True only when both
and sides are True; if either side is T =23

False the result is False.
r<1l0and x >0 False

z > 10 and z < 100 True

x or y is True when either side is
or True; it is only Fals when both T =23
sides are False.

r<10orz >0 True
x> 10 or z < 100 True
z<10or xz <20 False

not x has the opposite value of
not x: it is False when x is True and T =23
True when x is False.

not x < 10 True
not = > 20 False
not x == 23 False

You can build very complex expressions using these operators. In general,
if you aren’t sure how Python will group together sub-expressions, it is best to
use parentheses to force the expression to be parsed in the way you intend. For
example, the following condition describes the numbers 6, 7, 8, 9, 21, 22, 23;

if ((x > 5) and (x < 10)) or ((x >20 and (x < 24)):

58 CHAPTER 3. CONTROL STRUCTURES

One comforting thing about the way Python implements the Boolean oper-
ators is that it stops evaluating as soon as it knows the answer. For example,
the expression a and b is False if either of its operands is False, so if a is False
there is no need to evaluate b at all. If s is a string and n is an integer might
have the code

if n < len(s) and s[n] = 'b
print("The string contains letter 'b'.")

If n is not less than the length of the string, the right side of the expression
s[n] == 'b’ would normally cause the program to crash. It doesn’t in this case
because Python never evaluates the right side of the expression; it knows the
result just from the left side, n < len(s). Note that if we wrote the expression
in the opposite order,

if s[n] = 'b’" and n < len(s):
print("The string contains letter 'b’'.")

then the program will crash when n gets a value large than the length of s. The
or operator is implemented in the same way: if its left operand evaluates to
True it doesn’t bother to evaluate the right operand since it knows the result of
the full expression is True.

As a final example we will develop a program that inputs three numbers and
sorts them, which means it puts them into increasing order. There are many
sorting algorithms, but with just three numbers we can take a common-sense
approach. First we need to input the three numbers, which we will store in
variables a, b, and lstinlinec. This calls for three input statements, each of
which will look like

a = eval(input(”"Enter a number: "))

Next, we need to determine the ordering of Istinlinea, b, and Istinlinec. There
are factorial (n) ways to order n numbers (There are Istinlinen different choices
for the first number; for each of these there are n—1 choices for the second
number, and so forth....); since factorial (3) is 6, we know that there are 6
possible orderings for our numbers. One way to write the program would be to
have 6 variations of a statement such as

if a <=b and b <= c:
print(a, b, ¢)

We will take an alternative approach that finds the smallest number and then
orders the other two. This uses three variations of the following statement:

if a<=b and a <= c: # a is the smallest
if b <= c:
print(a, b, c)
else:
print(a, c, b)

3.2. BOOLEANS 59

Note the use of else here. If a is the smallest of the three numbers and b is not
less than or equal toc, then ¢ must be smaller than b.
Here is the entire program

This inputs 3 numbers and prints
then out in inceasing order.

def main():

a = eval(input(”Enter a number: "))
b = eval(input("Enter another number: "))
c = eval(input("Enter a third number: "))
print("The correct ordering of those is ", end="")
if a<=Db and a <= c: # a is the smallest

if b <= c:

print(a, b, ¢)
else:

print(a, c, b)
elif b<=a and b<=c: # b is the smallest
if a <= c:
print(b, a, ¢)
else:
print(b, c, a)
else: # c is the smallest
if a <= b:
print(¢, a, b)
else:
print(c, b, a)

main ()

Program 3.2.1: Sorting three numbers

60 CHAPTER 3. CONTROL STRUCTURES

3.3 While-loops

A loop is a block of code that a program will execute over and over until some
condition is met. Loops are among the most important concepts in all of pro-
gramming. Most programs spend most of their execution time inside loops. If we
didn’t have loops the runtime of a program would be proportional to its length;
loops allow us to have short programs that perform lengthy computations.

Python has two loop constructs, which we call while-loops and for-loops.
In this section we will introduce while-loops and in the next section we present
for-loops. The remainder of the chapter provides examples of these useful con-
structs.

A while-loop has the structure:

while <condition >:
statement_block

When this statement is executed, the statement_block is executed over and over
until the condition finally becomes False. If the condition is False when we first
get to the loop, the statement_block is not executed at all.

Program 3.3.1 prints the integers from 1 to 3.

This prints the numbers 1 to 3
def main():
x =1
while x <= 3:
print (x)
x =x + 1
main ()

Program 3.3.1: First loop example

We will now step through this program one instruction at a time. You want
to think of loops functionally in terms of what they do, but occasionally it is
useful to simulate the way the computer deals with the loop.

3.3. WHILE-LOOPS 61

At the start we set x = 1.

We test x <= 3. This is True, so we enter the loop body.
We print x, which is 1.

We set x = 141, which is 2.

We return to the top of the loop and test x <= 3. This is
True so we enter the loop body.

We print x, which is now 2.

We set x = 241, which is 3.

We return to the top of the loop and test x <= 3. This is
True so we enter the loop body.

We print x, which is now 3.

We set x = 341, which is 4.

We return to the top of the loop and test x <= 3. This is
False, so we leave the loop.

Of course, this is a lot of work to print the numbers 1, 2, and 3, but we can
easily change the program to Program 3.3.2, which prints the numbers from 1
to 10,000.

This prints the numbers 1 to 10,000
def main():
x =1
while x <= 10000:
print (x)
x =x + 1
main ()

Program 3.3.2: A longer-running version of program 3.3.1

In both Program 3.3.1 and Program 3.3.2 we give an initial value to variable
x before the top of the loop. This is important. Since x is part of the loop
condition, it must have a value before the condition can be evaluated. If we left
off the assignment statement x=1 we would get an error for an unknown variable
x at the start of the loop. In general, every variable mentioned in the condition
of a while-loop must be given a value before we get to the loop; if we fail to do
this the program will crash with an "unknown variable” error message.

Here is another example. Program 3.3.3 reads a positive integer from the

62 CHAPTER 3. CONTROL STRUCTURES

user and then prints all the ways it can be factored into a product of two inte-
gers. For example, if you enter 6 it prints

1*¥6=26
2*3 =6
3*2=26
6*1 =26

This reads a positive integer and prints all
the ways it can be factored.

def main():
n = eval(input(” Enter a positive number: "))
factor =1
while factor <= n:
if n % factor = 0:
print ("%d * %d = %d"”%(factor ,n/factor ,n))
factor = factor + 1

main ()

Program 3.3.3: This factors a number entered by the user.

Variable factor plays the role that x did in the previous programs: it takes on
all of the values between 1 and an upper bound, which in this case is n. It is
very important in this program that the line that increments variable factor:
factor = factor + 1 is not inside the if-statement. If it was, then once we got a
value of factor that did not divide evenly into n we would never change from this
value, and the program would never halt. If this should ever happen to you,
there are two ways to stop a runaway program. The <Ctrl>-C combination
generates a “keyboard interrupt” that will stop any running program. You
can also close the shell window in which the program is running. It is better,
however, to avoid this situation by thinking carefully about your programs.
Every time through a loop you should make some progress towards eventually
terminating.

Input loops

One very common use for a loop is to collect input from a user. The loop reads
data and processes it until some condition regarding the input is satisfied. The
loop condition in this situation is almost always dependant on computations in
in the body of the loop, so it might seem difficult to set up this condition so
that it has a value at the start, before the body of the loop has been executed.

3.3. WHILE-LOOPS 63

Program 3.3.4 shows a way to handle this situation. In this program the user is
repeatedly asked to enter numbers. When the user responds with a 0 the loop
ends and the average of the user’s numbers is printed.

def main ():
total = 0.0
count = 0
done = False
while not done:
x = eval(input(” Enter a number, or 0 to exit: "))
if x ==0:
done = True
else:
total = total + x
count = count + 1

print ("%d numbers were read for an average of %.2f"
% (count, total/count))

main ()

Program 3.3.4: Computing an average of data supplied by the user

This program bases the termination condition for the loop on variable done,
which reports whether we are done with the input phase of the program. Before
the loop starts we have done no input so we can’t be done: this variable is
always initialized to False. Each time we read new input we immediately check
it against the exit condition and adjust the value of done accordingly.

The following program illustrates an input loop that reads text strings rather
than numbers. The idea of the loop is the same as Program 3.3.4.

64 CHAPTER 3. CONTROL STRUCTURES

This is a guessing game based on
a Brothers Grimm tale

def main():
done = False
while not done:
name = input("What is my name? ")
if name.lower() = "rumpelstiltskin”:
done = True
else:

print("Wrong! Guess again.”)
print("Drat! You guessed it."”)
main ()

Program 3.3.5: What’s my name?

The program repeatedly prompts the user to enter a name. If the name is
" rumpelstiltskin " the loop halts and the program prints "You guessed it."
For any other input there is a "Guess again" message. This program accepts
any capitalization of the name: " Rumpelstiltskin”, " rumpelstiltskin " or even
"RumpelStiltSkin". It does this by comparing name.lower(), which is the trans-
lates all of the letters to lowerO-case, to the lower-case version of the correct
answer: " rumpelstiltskin . Note how easy this is; with very little work you can
make any input be case-insinsitive.

For a final example, we will nest one loop inside another. This is very
common in programming, and also a common source of errors. To do this
correctly, we need to be in control of our code and know what each element of
the program is doing.

The problem we will address with the program is this: Write a program
that inputs numbers and prints their factorizations into prime numbers. The
program should end when the user inputs the number 0. For example, for input
84 the program should print 2 2 3 7.

We will write this program in stages. The first stage just handles the user
input getting numbers from the user until we get the number 0. This is similar
to programs 3.3.5 and 3.3.6.

3.3. WHILE-LOOPS 65

This gets numbers from the user and
prints their prime factorizations

def main():
done = False
while not done:
n = eval(input(”Enter a number, or 0 to exit: "))
if n = 0:
done = True
else:
print("factorization of %d goes here” % n)
main ()

The user-input loop

Note the way we left a marker for where the next portion of the code goes
the " factorization goes here" line will be replaced by a new block of code. Note
also that, although this doesn’t completely solve the problem we started with, it
is a complete, working program. We can run it to test out our code so far. This
is important. As you start to develop longer and longer programs, you should
try to keep your programs in a working state as you generate more code. This
allows you to test out your code is small portions that are easy to understand.
If we run this much of our program we get the following interaction:

Enter a number, or 0 to exit: 2
factorization goes here

Enter a number, or 0 to exit: 5
factorization goes here

Enter a number, or 0 to exit: 0
>>>

Our next step is to replace the " factorization goes here” line with code that
actually computes the prime factorization. We don’t need to actually generate
prime numbers for this. If we start looking for factors at 2 and replace n by its
quotient with each successful factor, the only factors we will find will be prime
numbers. For example, suppose we start with n = 90. 2 is a factor, so we write
down 2 and reduce n to 45. 2 is no longer a factor of this, so we try the next
number, 3, as a factor. 3 divides evenly into 45, so we write down 3 and reduce
n to 15. 3 is still a factor of this, so we write down 3 again and reduce n to 5.
3 is no longer a factor, so we try 4, which is also not a factor. We eventually
test 5 as a factor; this is successful so we write down 5 and reduce n to 1. We
can now stop, since there are no more possible factors. Here is the code that
implements this:

66 CHAPTER 3. CONTROL STRUCTURES

factor = 2
while factor <= n:
if n % factor = 0:
print(factor, end=" ")
n = n/factor
else:
factor = factor + 1
print

Finding factors
Note that we print each successful factor with the statement
print(factor, end=" ")

so we don’t actually terminate the output line. At the end of the factorization
we have one print statement, which completes the line of output.
Here is our current version of the program.

This gets numbers from the user and
prints their prime factorizations

def main():
done = False
while not done:
n = eval(input("Enter a number, or 0 to exit: "))
if n = 0:
done = True
else:
factor = 2
while factor <= n:
if n % factor = O0:
print(factor, end=" ")
n =n/factor
else:
factor = factor + 1
print
main ()

User-input plus factoring

If we run this we get the following interactions:

3.3. WHILE-LOOPS

Enter a number, or 0 to exit: 34
217

Enter a number, or 0 to exit: 160
222225

Enter a number, or 0 to exit: 3344
22221119

Enter a number, or 0 to exit: 0
>>>

67

This works, but it seems awkward to have the same factor printed over and over
again, as in the factorization of 160, which is 2x2x2x2x2x5. With a little more
thought we can have a third loop count how many times each factor divides into
n. If the count is 1 we just print the factor; if it is more than 1 we print the

factor and the count, with the format factor\“count. Here is that code:

factor = 2
while factor <= n:
if n % factor = O0:
count =0
while n%factor =— 0:
count = count + 1
n = n/factor
if count — 1:
print(factor, end=" ")
else:
print ("%d"%d" %(factor ,count),
else:
factor = factor + 1
print

end="

Counting the factors

and here is the final version of the program:

”

68 CHAPTER 3. CONTROL STRUCTURES

This gets numbers from the user and
prints their prime factorizations

def main():
done = False
while not done:
n = eval(input "Enter a number, or 0 to exit: "))
if n =— 0:
done = True
else:
factor = 2
while factor <= n:
if n % factor =— 0:
count = 0
while n%factor = 0:
count = count + 1
n = n/factor
if count = 1:
print (factor, end=" ")
else:
print ("%d"%d" %(factor , count), end=" ")
else:
factor = factor + 1

print ()

main ()

Program 3.3.6: The final version

This time we get the following interactions:

Enter a number, or 0 to exit: 34
217

Enter a number, or 0 to exit: 84
2°237

Enter a number, or 0 to exit: 3344
27411 19

Enter a number, or 0 to exit: 0
>>>

3.4. FOR-LOOPS 69

3.4 For-loops

In the previous section we looked at while-loops, Python’s basic looping struc-
ture. There is a second loop construct in Python called a for-loop. This is more
specialized. We use for-loops when there is a particular set of values that we
want to work through, doing some task once with each of these values.

A for-loop has the structure:

for <variable> in < sequence >:
statement_block:

When this statement is executed, the variable takes on the first value in the
sequence and the statement_block is executed. The variable then takes on the
next value and the statement_block is executed. This process continues with
each of the values in the sequence.

What is a sequence? It is any collection of ”sequential” data values: for
something to be a sequence we must be able to say what the first value is, and
for each value but the last we need to be able to say what the next value is. The
non-negative integers form a sequence: 0 is the first value, 1 comes next, 2 is after
that, and so forth. The non-negative real numbers do not. For example, there is
no "next” value after 1.3. There is 1.31, but 1.301 comes before that, and 1.3001
precedes that , and so forth. Python has many ways to construct a sequence;
among the most imporant of these is the list. A list is a sequence specified by
listing values inside square brackets, as in ["John”, " George”, "Paul”, "Ringo"].
Python makes it easy to work with lists. For example, Program 3.4.1 will print

The Beatles were:
John
George
Paul
Ringo

This prints a list of the Beatles
def main():
print("The Beatles were:")
for name in ["John" ,” George” ,”" Paul” ,”" Ringo" |:
print(" %s" % name)
main ()

Program 3.4.1: The Beatles

Any values can be put into lists: strings, numbers, even other lists. For
example, [1, 2, [3, 4]] is a list where the first two elements are numbers and

70 CHAPTER 3. CONTROL STRUCTURES

the third is a list with two elements.

It is often useful to have a loop walk through a range of numbers. Python’s
range() function generates sequences of numbers for this purpose. There are
three ways to use this function:

e range(a, b) gencrates a list-like structure containing the numbers from a
to b: including a but not including b. For example, range(3, 7) is the
sequence 3, 4, 5, 6s. This assumes a is smaller than b; if the reverse is
true the list generated is empty.

e range(b) is the same as range(0, b). For example, range(5)is [0, 1, 2, 3, 4].

° range(a, b, c) uses an increment of ¢ to go from one number to the next.
Sorange(2, 12, 3)is [2, 5, 8, 11] and range(5, 0, —1)is [5, 4, 3, 2, 1].

In Python 2 range(a, b) is an actual list. This is simple but runs into trouble
if you work with very large ranges. For example, if you try to roll a pair of dice
a billion times with the code

for x in range(1000000000):
value = RollDice ()

Python 2 would actually generate in memory a list with a billion items. This
would probably cause your program to crash. In Python 3 the range-function
returns a range—object that can be iterated through with a for-loop and works
like a list, but it has the same small size regardless of the size of the range. The
only time you are likely to see a difference between lists and range-objects is if
you try to print a range-object.

print(range(0, 10))
prints the words range(0, 10) rather than the numbers from 0 through 9. If

you want to print the elements of the range you can convert it into an actual
list with the list () function:

print(list (range(0, 10)))

prints [0,1,2,3,4,5,6,7,8,9]

The following code fragment uses the range() function to print the factors
of the number 36. Note that we need to extend the range up to 37 so that the
last number in the list is 36.

for x in range(l, 37):
if 36%x = 0:
print(x)

Program 3.4.1: Factoring 36

3.4. FOR-LOOPS 71

We can also treat strings as sequences — the letters are taken in the order in
which they appear in the string. The next program reads a string from the user
and reports how many instances of the letter ”a” it contains. As is common
with programs that count things, this has a variable count that starts at 0 and
is incremented each time the appropriate letter is found.

This counts the a's in a string
def main ():

string = input("Enter a string: ")

count = 0

for letter in string:

if letter = "a":
count = count + 1

print("The letter 'a' occurs %d times."%count)

main ()

Program 3.4.2: Counting instances of a letter

We will illustrate for-loops with several programs that find prime numbers.
Remember that a number is prime if its only factors are 1 and itself. 2, 3, 5, 7,
11, and 13 are all prime numbers, 15 is not. First, we will write a program that
lets the user input a number; the program will say if this number is prime. The
basic structure inputs a single number and says if it is prime:

def main():
number = eval(input(” Enter a number: "))

test if it is prime; for now we
always say no.
isPrime = False

if isPrime:

print("%d is prime.” % number)
else:

print("%d is not prime.” % number)

main ()

Program 3.4.3: Initial version

Next, we need to fill in code for testing whether the number we have is
prime. One way to do this is to think about the definition. A number is prime

72 CHAPTER 3. CONTROL STRUCTURES

if it is divisible only by 1 and itself, so it is not prime if we can find any divisor
greater than 1 and less than the number itself. This is a natural application for
a for-loop we know exactly the range of values we want to check, so we use the
range() function to generate them and a for-loop to check them. We will start
the isPrime variable out at True and change it to False if we ever find a divisor.

isPrime = True
for factor in range(2, number):
if number % factor =— 0:

isPrime = False

Putting this altogether, we have the first complete version of our prime
finder:

This lets the user enter a number and reports
whether that number is prime.

def main():
number = eval(input("Enter a number: "))
isPrime = True
for factor in range(2, number):
if number % factor = 0:

isPrime = False

if isPrime:

print("%d is prime.” % number)
else:

print("%d is not prime.” % number)

main ()

Program 3.4.3: Final version

We can turn this into a program that generates prime numbers if we surround
it with a loop in place of the single input statement. For example, if we want
to find all prime numbers between 2 and 100 we would use the loop:

for number in range(2, 101):

isPrime = True
for factor in range(2, number):
if number % factor = 0:

isPrime = False

3.4. FOR-LOOPS

73

Note that for each new value of number we need to reset isPrime to True; oth-
erwise, once we found a non-prime number there would never be a way to find
a prime one: isPrime would always be False.

One more change to Program 3.4.3 will help make it a better prime number

generator. The prime numbers are fairly

sparse; most integers are not prime.

If we print ”is prime” or ”is not prime” with every number, there are so many

non-primes that it becomes hard to see

the actual primes. We accordingly

change the if-statement to report only the prime numbers and be silent on the

non-primes. Here is the resulting program

This prints all of the prime
a limit supplied by the user
def main ():

max = eval(input (" Enter the

numbers up to

largest number to check: "))

for number in range(2, max+1):

isPrime = True
for factor in range(2,
if number % factor
isPrime False

if isPrime:

print("%d is prime

main ()

number):
0:

." % number)

Program 3.4.4:

Final version

As a final example for this section, here is a third prime number program.
This time we make two changes that illustrate some of the differences between
for-loops and while-loops. The first change is that instead of asking the user
how high in the list of integers we should check for prime numbers, this time we

ask the user how many prime numbers we

should find. This might sound like a

minor change, but it forces us to rethink our loops. In Program 3.4.4 our basic

structure is this:

for number in range(2
<if number is

, max+1):

prime, print it>

If N is the number of primes we need to find, we could change our main loop to:

74 CHAPTER 3. CONTROL STRUCTURES

for i in [I,2, 3, . NJ:
<Find the ith prime and print it>

This isn’t so simple. How do we find the ith prime number? This seems
unnecessarily complicated. An easier solution is to have a loop that generates
numbers to test, with the exit condition based on whether we have found enough
primes. This needs to be a while-loop rather than a for-loop because we don’t
know how many times we will execute its body; we just keep going around until
we have enough primes. This looks something like the following:

number = 2
primeCount = 0
while primeCount < N:
<if number is prime:>
print number
primeCount = primeCount + 1
number = number + 1

It should be an easy matter to convert the body of this while-loop to Python
code. First, we are going to make another change in the program. What we
have so far will make a long list of prime numbers. The output will be shorter
if we allow for multiple columns, such as

2 3 5 7 11 13
17 19 23 29 31 37
41 43 47 53 59

The first thought of many beginners at this point would be ”We need an-
other loop.” But what would this loop do? We already have a loop to generate
numbers. We don’t need a loop to count the entries in a line; a simple variable
can do that. We will print the numbers just as before, only with a formatting
statement to control the number of spaces used for each number regardless of
how many digits it has (so we get nice columns of output), and we will end each
print statement with a comma, so that successive prints appear on the same
line. Each time we print a number we will increment a lineCount variable that
tells us how many numbers are on the current line. When this is large enough
we execute a print statement (with no comma) to terminate the line and start
over. Of course, we will also start our lineCount variable over at 0.

Now our code looks like this:

3.4. FOR-LOOPS

number = 2
primeCount = 0
linecount = 0
while primeCount < N:
<if number is prime:>

print ("%7d " % number, end ="")
primeCount = primeCount + 1
l[ineCount = lineCount + 1
if lineCount = C:
print()
lineCount = 0
number = number + 1

Here is the whole program:

75

76 CHAPTER 3. CONTROL STRUCTURES

This prints the first N prime numbers,
where the value of N is supplied by the user.
The output is printed in C columns.

def main():
N = eval(input("How many prime numbers do you want?

number = 2
primeCount = 0

lineCount = 0
while primeCount < N:
isPrime = True
for factor in range(2, number):
if number % factor =— 0:
isPrime = False

if isPrime:
print("%7d " % number, end="")
primeCount = primeCount + 1

l[ineCount = lineCount + 1
if lineCount = C:
print()
lineCount = 0
number = number + 1

main ()

"))

C = eval(input("How many columns of output do you want? "))

Program 3.4.5: Final version

3.5. DESIGNING CODE WITH LOOPS 7

3.5 Designing code with loops

In the last two sections we have seen while-loops and for-loops. Beginning
programmers are often mystified as to when to use which type of loop. The
good news is that it often doesn’t matter. In many situations we can set up
natural, easy to read code with either type of loop. For example, the following
blocks of code both sum the numbers from 1 to 10:

sum = 0 sum = 0
for x in range(1l, 11): x =1
sum = sum + X while x <= 10:
sum = sum -+ X
print(sum) x =x + 1

print(sum)

In either case the loop generates the list of numbers; inside the loop we have
code to compute their sum. The first of these is a little shorter, but not enough
to matter. To someone familiar with the syntax of for-loops and while-loops
they seem equally clear. In a situation like this you can use either looping
construct.

Suppose we want to generate a sequence of ten coin tosses: "Heads” or
"Tails”. At the end of section 2.4 we discussed the random library that has
random number generators. In this case we will use randint (0, 1), which gives
random numbers that are either 0 or 1. The loop we use is just a counting
device; it will generate values, but we won’t do anything with them other than
to count how many there are. Again, we could do this with either looping
construct:

from random import x from random import =*
for x in range(10): x =0
number = randint (0, 1) while x < 10:
if number — 0: number = randint (0,
print("Heads”) if number = 0:
else: print("Heads”
print(" Tails”) else:
print(" Tails"
x =x + 1

)
)

1)

78 CHAPTER 3. CONTROL STRUCTURES

Programs often use loops to generate sequences of values that are to be
manipulated in some way. For example, suppose we want to count the number
of leap years between two given years, such as 1878 and 1945. There are two
separate tasks here: one is to generate the sequence of years and the other is
to determine which of them are leaps years and keep track of their number.
The first task requires a loop, and it doesn’t make much difference whether we
use a for-loop or while-loop for it. The second task needs an elaborate if-
statement; we saw code for this in Program 3.1.3. Here again we show parallel
constructions, with for- and while-loops.

startYear = 1878

finalYear = 1945

leapCount = 0

for year in range(startYear, finalYear+1):
if year % 400 = 0:

isLeap = True
elif year % 100 = 0:
isLeap = False

elif year % 4 — O0:
isLeap = True

else:
isLeap = False
if islLeap:
leapCount = leapCount + 1

print("%d leap years.” % leapCount)

Program 3.5.1: Counting leap years, for-loop

3.5. DESIGNING CODE WITH LOOPS 79

startYear = 1878

finalYear = 1945

leapCount = 0

year = startYear

while year <= finalYear:
if year % 400 = 0:

isLeap = True
elif year % 100 = 0:
isLeap = False
elif year % 4 = 0:
isLeap = True
else:
isLeap = False
if islLeap:
leapCount = leapCount + 1

year = year + 1
print("%d leap years.” % leapCount)

Program 3.5.2: Counting leap years, while-loop

In section 3.4 we saw a similar program where we wanted to find the prime
numbers in a range of integers. We used a for-loop to generate all of the
integers in this range, but we could have just as easily used a while-loop. Later
in that section we wanted to find the first N prime numbers for some value N.
That would not have been easy to do with a for-loop because we didn’t know
the endpoint of the range of values to generate as candidates.

When there is a definite sequence of values that need to be processed, for-
loops are often more natural; this was the reason for-loops were invented. Sup-
pose, for example, that we want to count the number of instances of the letter
‘a’ in the word ’abracadabra’. We can walk through the letters of the string
with a simple for-loop:

for letter in "abracadabra”:
With a while-loop we need to use numeric indexes for the string:

index = 0
s = "abracadabra”
while index < len(s):

letter = s[index]

Here are the resulting programs:

80

CHAPTER 3. CONTROL STRUCTURES

count
for le
if

=0

tter in
letter
count

print(count)

"abracadabra”:

no_n

a’:
count + 1

index
s ="a
count
while
le
if

in

print (

=0

bracadabra”

=0

index < len(s):

tter = s[index]
letter =— "a":
count = count + 1

dex = index + 1
count)

The version with for-loops is certainly shorter. More importantly, it is more
natural and easier to read. This means the programmer is more likely to write

it correctly.

The following rule of thumb can help you decide which looping construct to

use:

If you need to generate a definite list of values
where you can say in advance which values belong
in this list, for-loops are usually easier to use. If
you need to generate an indefinite list of values,
for which you cannot say in advance where to stop,
while-loops are usually easier.

We will illustrate these ideas by developing a program that prints a calendar
for one month. In the next few chapters we will make several versions of this
program to illustrate various programming constructs. This version asks the
user to input some of the information about the calendar that we will later be
able to compute directly.

Here is typical output from the program:

3.5. DESIGNING CODE WITH LOOPS 81

July 2009
Sun Mon Tu Wed Th Fri Sat
1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

We will ask the user to enter the name of the month: (”July 2009” in this
case), the number of days in the month (here 31) and the day of the week the
month starts on (here 3 for Wednesday). We will call these three variables
monthName, daysInMonth, and startsOn. Our job is to center the name, to print
the header with the names of the days of the week, and then to print a table
with the dates under the appropriate days.

The first decision is to settle on how we will print the table. It is easy to
generate the numbers that need to be printed: 1 up to daysInMonth. We can do
this with either

for day in range(l, daysinMonth + 1):
or

day =1
while day <= daysinMonth:

day = day + 1

The former seems a little clearer, so we will go with that. We can get
the numbers to print in columns in the same way we did in Program 3.4.5:
each number is printed with a formatted print statement using a fixed column
width, followed by a comma. At the completion of each row we do a single
print statement (with no comma) to terminate the line. Using a column width
of 5, this gives us the following code:

dayOfWeek = 0
for day in range(l, daysinMonth + 1):
print ("%5d" % day, end=""'"")
dayOfWeek += 1
if dayOfWeek — 7:
print()
dayOfWeek = 0

This almost does what we need, but it makes every month start on Sunday.
This is where our startsOn variable comes into play. If a month starts on a
Wednesday, as does July 2009 in our example, startsOn will be 3. We want to
print blanks corresponding to the first 3 days of the week (Sunday, Monday and

82 CHAPTER 3. CONTROL STRUCTURES

Tuesday) and print a 1 in the column for Wednesday. Note that since we print
the numbers with

print ("%5d" % day, end="""")

we can print blanks that occupy the same column width with
print("%bs” % " ", end=""""")

Here is the loop that prints the blanks:

dayOfWeek = 0

for day in range(0, startsOn):
print("%5s” % " ", end=""""")
dayOfWeek += 1

The rest of our program is easy. We need to print a header with the names
of the days of the week. If we put them into a list we can use a for-loop to walk
through it; we print the names with the same column widths as the body of the
calendar:

for day in ["Sun” ,"Mon" ,"Tu” ,"Wed" ," Th"” ,” Fri" ," Sat”]:
print("%5s" % day, end="""")
print()

This is so simple because Python gives us good tools for working with lists and
strings.

Finally, we need to center the name of the month. Our calendar has 7
columns, each 5 spaces wide, so the calendar is a total of 35 spaces wide. The
name will occupy len(monthName) of these spaces, leaving 35—len(monthName)
left over. We want to print half of the leftover spaces prior to the name. There
is no easy way to use the formatted print-statements with a variable width, so
we use the * operator to make a string with the right number of blanks:

leftover = 35—len(monthName)
print(" "x(leftover /2), end="""")
print(monthName)

Here is the full program, with some comments inserted to make it more
readable:

3.5. DESIGNING CODE WITH LOOPS 83

This prints the calendar for one month

def main():
monthName = input("Name of month: ")
daysInMonth = eval(input(”Number of days in the month: "))
print("What day of the week does the month start on?”)

startsOn=eval(input (" Enter 0 for Sunday, 1 for Monday, etc:

First we center the month name.
leftover = 42—len(monthName)
print(" "x(leftover /2), end="""")
print (monthName)

Then print the names of the days of the week,

in columns:

for day in ["Sun”,”Mon",” Tu”,”Wed” ,” Th"” " Fri” " Sat"]:
print("%5s” % day, end="""")

print()

This indents 5 blanks for each of the days
of the week prior to the day this month starts on:
dayOfWeek = 0
for day in range(0, startsOn):
print("%5s” % " ", end="""")
dayOfWeek += 1

Finally , we print the days in the month,
with a line break after each Saturday:
for day in range(1l, daysInMonth + 1):
print("%5d” % day, end="""")
dayOfWeek += 1
if dayOfWeek = 7:
print()
dayOfWeek = 0
if dayOfWeek != 0:

print()

main ()

Program 3.5.3: Calendar Program: FirstVersion

84 CHAPTER 3. CONTROL STRUCTURES
3.6 Break-statements and Continue-statements

Break-statements

Both for-loops and while-loops are set up to exit only at the beginning or end
of the loop. Once we start executing the body, the entire body is executed.
Sometimes that isn’t what you need to do. Suppose, for example, that you
have a loop that reads names, and follows each name with a greeting. Suppose
further that we want the loop to end when we get the empty string for a name.
Since this is an indefinite situation (we don’t know in advance how many names
we will see, we need a while-loop for this. It is tempting to write the following
code:

done = False

while not done:
name = input("Enter a name: ")
print ("Hi %s!” % name)
if name = "":

done = True

This works, to some extent, but when we enter the empty string to exit it still
prints

"Hi "
What we really want is to check the exit condition as soon as we read the name,
and to leave the loop as soon as this condition becomes True. Since the loop
only checks this condition at the top, we need to put the rest of the loop body
inside an if-statement:

done = False
while not done:
name = input("Enter a name: ")
if name = "":
done = True
else:
print("Hi %s!" % name)

For a short loop this is simple and clear. As our programs become more
complicated, it will sometimes be useful to exit from a loop immediately without
putting the rest of the loop in a conditional statement. The break-statement is
designed for this. The statement break causes execution to immediately leave
the innermost loop in which it occurs. For example, the loop above could be
written:

3.6. BREAK-STATEMENTS AND CONTINUE-STATEMENTS 85

while True:
name = input("Enter a name: ")
if name = "":
break
print ("Hi %s!” % name)

The "while True” header of this loop indicates that the loop body will handle
the termination of the loop with a break-statement. Note that there is no
else-clause on the if-statement. This isn’t needed, because if the condition is
True we will exit from the loop and never get to the print-statement.

Break-statements work with for-loops just as they do with while-loops. For
example, the following code will print a statement about sending money to John
and Paul, but not to George or Ringo:

for name in ["John", "Paul”, " George", "Ringo"]:
if name = " George" :
break

print("Send money to %s” % name)

If your code has loops inside loops, break-statements only exit from the
innermost loop inside which they occur. Consider the following code fragment:

while True:

name = input("Enter a name: ")
if name — "":

break
firstName =
for letter in name:

if letter = " "

break

firstName = firstName + letter

print(firstName)

non

Here there are two loops. The outer loops handles the input of names, and exits
when it sees a blank name; the first break-statement handles this termination.
The second loop, inside the first, builds up a string firstName by walking along
the letters of name until it gets to the end or to a blank. When it gets to a
blank, the break-statement exits it from the inner loop, causing firstName to
be printed, but the outer loop is not ended, so the program will again ask for
another name.

Continue-statements

It is very common for a loop to generate values (perhaps by asking the user for
them) and then do something with these values. For certain values there might
not be anything to do. The continue-statement is designed for this situation.

86 CHAPTER 3. CONTROL STRUCTURES

When a continue-statement is executed, control goes back to the top of the
loop. For example, the following code prints the odd numbers between 1 and
10:

for x in range(1l, 10):
if x % 2 = 0:
continue
print(x)
In practice continue-statements are used less frequently than break-statements

but they are occasionally handy. Of course, we could always get the same effect
with a conditional statement:

for x in range(1l, 10):
if x% 2 1= 0:
print(x)

3.7. LOOP PATTERNS

3.7 Loop Patterns

Input Loops

Both of the following patterns read strings until they get a blank input.

or

done = False
while not done:
x = input(” Enter something: ")
if x ="":
done = True
else:
<whatever you want to do with x>

while True:
x = input(” Enter something: ")
if x ="":
break
<whatever you want to do with x>

Process elements of a sequence

or

for x in <sequence >:
<whatever you want to do with x>

x = <first element of the sequence>

while <x is in the sequence>:
<whatever you want to do with x>
x = <next element of the sequence>

87

The second version usually involves using a numeric index to refer to the first
element of the sequence (index 0), the second element (index 1) and so forth.

Where it makes sense the first version is usually easier.

88 CHAPTER 3. CONTROL STRUCTURES

Do something until a condition is satisfied

while not <condition >:
<something>

or

while True:
if <condition >:
break
something

This is equivalent to the first version; it uses a break-statement to exit from
the loop
or

done = False
while not done:
<something>
if <condition >:
done = True

This allows the <condition> to be created by the action <something>.
or

while True:
<something>
if <condition >:
break

This is completely equivalent to the preceding version; it just uses a break-
statement to exit from the loop. Note that this differs from the second version
only in the other of the statements.

3.8. EXERCISES 89

3.8 Exercises

Write a complete Python program to solve each of the following problems.

3.1

3.2.

3.3.

3.4.

3.5.

Write a program that inputs a number and says if it is "nice” or not. If
the number is even it is nice if it is divisible by 100. If the number is odd
it is nice if it is divisible by 25. Here is a typical run

Enter a number: 125
That is a nice number!

Now modify the program from (Problem 3.1) by wrapping a loop around
it. Your program should quit when the user enters the number O:

Enter a number: 125
That is a nice number!
Enter a number: 350
That number is not nice.
Enter a number: 5400
That is a nice number!
Enter a number: 0
goodbye!

Write a program that inputs a sequence of strings, terminated by the
empty string. For each string the program should say whether it contains
"bob" as a substring. You can use the in operator to check for substrings:
"bob” in s is True if string s contains "bob" as a substring and False if it
doesn’t.

Write a program that reads numbers from the user, and then prints their
average. As you know, the average is the sum of the numbers divided by
how many there are. Be sure to make the sum be a float, not an integer;
one way to do this is to start it off at 0.0.

Enter a number: 4

Enter a number: 12

Enter a number: 8

Enter a number: 0

The average of those numbers is 8.00

Revise the program from Problem 3.4 so that in addition to the average
it prints the largest and smallest of the values it has seen. For example:

Enter a number: 4
Enter a number: 12
Enter a number: 8
Enter a number: 3
Enter a number: 13
a

Enter a number: 11

90

3.6.

3.7.

3.8.

3.9.

CHAPTER 3. CONTROL STRUCTURES

Enter a number: 0
The average of those numbers is 8.50
The largest is 13 and the smallest is 3.

Write a program that reads strings over and over until it sees the word
"quit”, at which point it prints "Goodbye" and stops. While it is reading
strings, each time it sees the string "bob" it replies "BOB RULES!" It igores
all other words except " quit”.

Enter a string: foobar
Enter a string: Oberlin
Enter a string: Bob

Enter a string: bob

BOB RULES!

Enter a string: Harry Potter
Enter a string: quit
Goodbye

Here is a harder one. Write a program that inputs a string and says if
it is a palindrome: a word that is the same forwards and backwards, like
"bob"” or "anna” or "amanaplanacanalpanama”. One way to do this is to
have a counter start at the front of the string and another start and the
end. At each step you compare the letter at each counter; if these are the
same you increment the front counter and decrement (subtract 1 from)
the back counter. Continue on until you find a difference or the counters
CTOss.

Write a program that finds all of the perfect numbers less than 100,000.
A number is called perfect if its factors (including 1 but not the number
itself), sum to the number. For example, 6 is perfect because its factors
are 1,2, 3 and 6 and 1 + 2 + 3 = 6.

Write a program that computes the factorial of integer n. This is the
product of the numbers from 1 to n. For example, the factorial of 5 is
1x2x3x4x5=120. Factorials quickly become very large; even 10
factorial, which is 3628800, has 7 digits. See what happens if you try to
compute 100 factorial. Add a feature to your program to print the number
of digits in the factorials in addition to their values.

Chapter 4

Functions

It is theoretically possible to write any program using only loops, conditional
and assignment statements. In practice, it is difficult to write any program
much longer than a page using only these statements. We need a tool that
will allow us to assemble a large program from smaller pieces. That is the role
of functions in programming. Once you have mastered functions and the art
of programming with them you can write programs to implement almost any
algorithm you can think of.

91

92 CHAPTER 4. FUNCTIONS

4.1 Concepts

A function is a block of code that has a name attached to it. We execute this
code by calling the function. In Python we call a function by giving its name,
followed by open and closed parentheses. For example, if a function is named
foo, we call it with foo(). We may put values inside the parentheses; this is
the way inputs are given to the function. We call values put in the parentheses
arguments to the function. In the expression

bar(3, 5)

a function named bar is being called with arguments 3 and 5.

There are two kinds of functions: functions that return values and functions
that do not return values. These two kinds of functions are used in very different
ways. When a function returns a value, you can use a call to this function as
a placeholder for the value the function returns. For example, we might have
a function addOne that takes a numeric argument and returns that argument
plus 1. This means that addOne(5) returns the value 6. We might have a
line of a program x = addOne(5). The effect of this line is to set variable x
to 6. The call to function addOne produces a value and this call can be used
anywhere we can use that value. We could even use it as an argument for
another call to addOne: y = addOne(addOne(5)) sets variable y to 7. When
a function does not return a value we use a call to it as a statement by itself.
For example, we might have a function printCalendar that takes a month and
a year as arguments and prints a calendar for that month. We could call this
function as printCalendar (9, 2011) to print a calendar for September, 2011. We
would not say x = printCalendar (9, 2011) because this function does not return
a value.

When writing about functions it is customary to put parentheses after the
name of the function to emphasize the fact that this is a function. Unless there
is a reason to discuss the arguments, we often omit them from the name. In the
examples above, we might discuss the functions addOne() and printCalendar ().
We have already used a number of standard Python functions. input() is a
function that takes an optional string argument and returns a string typed by
the user. range() is a function that takes one, two, or three integer arguments
and returns a list of numbers. len() is a function that takes a sequence and
returns its length. We have seen a function print() that prints its argument
(and doesnt return anything). Note that in all of these examples we can use
the function without knowing how it is written. All that matters is what inputs
the function takes and what value, if any, it returns. One great advantage
of functions is that once they are written we can use them without thinking
about their details, only about their inputs and outputs. This is what allows
us to write long programs. Functions encapsulate a process so that we may
concentrate on what it does rather than how it works.

4.2. FUNCTION DEFINITIONS — THE BASICS 93

4.2 Function definitions — the basics

There are three questions you must answer before you can write a function
definition:

e What will the function do?
e What inputs does the function need?
e What, if anything, will the function return?

The answers to all of these should be clear from the way you use the function.
It is often easiest to write the function call before you write its definition. This
might seem backwards the definitions usually appear before the calls in the
program code. However, modern editors make it easy to move around in the
code; there is no reason that we need to write the program in the same order in
which it is read.

A function definition has the form:

def <name>(<parameters>):
<body>

In other words, the definition

e starts with the word def;

e has the name of the function. This should be a unique name in your
program. Python will allow you to give a function the same name as a
variable, but the result might not work the way you expect. To emphasize
the difference, some people capitalize the first letter of function names and
have variable names start with lower-case letters;

e has a list of parameters inside parentheses. There might not be any pa-
rameters, but there must be parentheses in any case;

e has a body indented underneath the function header. This body is the
code that is executed when the function is called.

There are a number of issues with parameters, so we will start with functions
that have no parameters. One way to get data without inputs to the function
is to ask the user for it. Here is a function that asks the user to input a string
and prints it back out:

def ReadAndReport ():
text = input(" Enter a string: ")
print("You typed %s'." % text)

94 CHAPTER 4. FUNCTIONS

The name of this function is ReadAndReport. It has no parameters. When
it is called the two lines of the body: a raw_input statement and a print
statement, will be executed. There must be a match between the parameters
of a function and the arguments with which it is called. Since this function has
no parameters, we call it with no arguments, as in

ReadAndReport ()

Here is a complete program that makes use of function ReadAndReport():

def ReadAndReport ():
text = input(" Enter a string: ")
print("You typed "%s'.” % text)

def main():
ReadAndReport ()
ReadAndReport ()
main ()

Program 4.2.1: Coding with a function

The last line of this program, outside any of the definitions, calls function
main(), so this is where execution starts. Inside function main(), function
ReadAndReport() is called twice. Here is a typical run of this program:

Enter a string: blah

You typed ’blah’.

Enter a string: La de dah
You typed ’La de dah’.

It might be nice to call function ReadAndReport() in a loop, but this function
doesn’t give any way to signal the loop to quit. We need to return something
if we want to exit the loop based on the input. Here is another version of our
program that does this:

4.2. FUNCTION DEFINITIONS — THE BASICS 95

def ReadReportAndSignal ():

text = input(" Enter a string: ")
if text = "":

return "No input”
else:

print("You typed '%s '." % text)
return " Got input”

def main():
done = False
while not done:
response = ReadReportAndSignal()
if response = "No input”:
done = True
main ()

Program 4.2.2: Returning a value from a function

Our function ReadReportAndSignal() still reads a string from the user and
prints out a message about it. Unlike function ReadAndReport(), the new func-
tion returns a message about the string it has read: either the message "No
input" or the message "Got input". Function main() saves this message in
variable response and uses this to decide when to exit from the while-loop.

The syntax of a return-statement is

return <expression>

When this is executed the expression is evaluated and control immediately goes
back to the point where the function was called and the value of the expression
is used as the value of the function call. If the expression is omitted and the
statement is just

return

no value is returned but control goes back to the point of the call.

Here is a third version of our program. This time we incorporate the loop
inside the function and use a return statement to break out of the loop and the
function:

96 CHAPTER 4. FUNCTIONS

def ReadAndReportLoop():
while True:
text = input("Enter a string: ")
if text = "":
return
else:
print("You typed '%s'." % text)

def main():
ReadAndReportLoop ()

main ()

Program 4.2.3: Using return to break out of a function

Since function ReadAndReportLoop() does not return any values, we call it as a
statement, not as an expression. Note that the return statement exits from the
function even when it is nested inside a loop.

As a final example, here is a function that simulates the toss of a coin. It gets
a random value that is either 0 or 1, and returns a corresponding value " Heads"
or " Tails". This makes use of the randint() function that we introduced in
Section 2.4. This function requires us to include the line:

from random import x

at the top of the program. Recall that randint(a, b) returns a random integer
between a and b, so randint (0, 1) returns either a 0 or a 1. Of course, we could
replace a call to function CoinToss() with one to randint (0, 1) but that would
lose one of the great advantages of writing our own functions: abstraction. When
we see the name CoinToss we know that the function represents the tossing of
a coin. This is very useful information for a human trying to understand the
program, information that is missing from the expression randint (0, 1).

4.2. FUNCTION DEFINITIONS — THE BASICS

from random import x

def Toss():
x = randint (0, 1)
if x =— 0:
return " Heads”
else:

return " Tails”
def main ():
for i in range(10):

print(Toss())

main ()

Program 4.2.4: Simulating coin tosses

97

A function call in Python always gives a value, which is None (a formal value
in Python) if the function itself does not return anything. You should design
functions so that they either return a value, and in that case they should always
return something for any input, or else to not return a value in any situation.
The following program will print "small" if the user enters a number less than
10, and it will print the word "None" if the user enters a value 10 or larger. This
is very confusing for the user of the program. The problem comes from function
BadSize(), which only returns a value in some cases. Design your programs so

this doesn’t happen.

def BadSize(x):
if x < 10:
return "small”
def main ():
print(BadSize(value))

main ()

value = eval(input (" Enter a number: "))

Program 4.2.4: Function BadSize sometimes returns None

The problem comes from function BadSize(), which only returns a value in some

cases. Design your programs so this doesn’t happen.

98 CHAPTER 4. FUNCTIONS

Scoping Rules

People have been writing programs for over 50 years and for most of that time
functions have been the main building blocks of programs. One thing we have
learned about the art of programming is that code is much more likely to be
correct if the functions are as small as possible and independent of each other. It
might sound convenient to allow one function to modify the variables of another,
but that turns out to be a very bad idea one that is the cause of many, many
mysterious program failures. Python does not allow this to happen. Unless
you explicitly state that a variable is global (something we will discuss later),
all of the variables of a function are hidden from all other functions they are
accessible only within the function in which they are created.
Consider the following simple program.

def Changer():
x = 23

def main():
x =5
Changer ()
print(x)

main ()

At first glance it might seem that function Changer() will modify the value of
x to 23 and so this program might print 23. That is not correct the program
actually prints 5. The reason for this is that function Changer() and function
main() each have their own variables named x. Neither function can see the
other function’s variables. So main() changes its x to 5 and Changer() sets its
to 23; these variables are completely unrelated. The print-statement occurs in
main(), so it is main’s x that is printed, with the value of 5.

If you want a function to change the value of a variable in another function
you should have the first function return the new value. Here is this program
rewritten correctly.

def Changer():
return 23

def main():
x =5
x = Changer ()
print(x)
main ()

Program 4.2.5: Changing variables with a function call

4.2. FUNCTION DEFINITIONS — THE BASICS 99

Now function Changer() returns the new value to main(), which assigns this
value to x. Only function main() can see x, so only main() can change its value.
Program 4.2.5 prints 23.

Similarly, the following program gives an error message saying that variable
x in the line if x > 9: of function Printer () is not defined.

def Printer ():
if x > 9:
print("big")

else:
print (

"small”)

def main():
x =5

Printer ()

main ()

No variable x is created for function Printer (), and this function can’t see the

variable x inside main().
The correct way to get data into a function is to pass it in through a param-

eter. That is the topic of our next section.

100 CHAPTER 4. FUNCTIONS

4.3 Parameters and Arguments

Functions represent processes. A function is a named block of code that can be
invoked from any point in the program. Much of the power of functions comes
from our ability to supply inputs to these processes. The inputs to a function
are called its arguments and they are represented inside the function definition
by variables called parameters. In this section we will describe parameters and
their relationships to arguments.

As we said in Section 4.2, the parameters are listed inside the parentheses
in the function header. For example, we might have the following header to a
function:

def foo(x, y):

This is the start of the definition of a function named foo. The parameters
for this function are named x and y. These are variables, just like any other
variables used in the function with one exception: variables x and y are given
initial values when the function is called. The call of foo has the form

foo(<first_arg >, <second_arg>)

When this is executed < first_arg > is evaluated and its value becomes the start-
ing value for parameter x. Similarly, <second_arg> is evaluated for the initial
value of y. The body of foo is then executed until it ends or returns.

As a first example, we will write a function to calculate a 20% tip to add to
the bill for a meal. To keep our arithmetic simple at mealtime, in cases where
the tip is not an exact dollar amount we will round up to the next dollar. The
tip calculation is easy: we get 20% of a value by multiplying by 0.2, and we
round up with the ceiling function from the math library (see Section 2.4). For
a given cost we compute the tip as ceil (cost*0.2)]1 our function returns this
value:

def Tip(mealCost):
tipAmount = ceil (mealCost=0.2)
return tipAmount

Here is a full program that makes use of this:

4.3. PARAMETERS AND ARGUMENTS 101

def Tip(mealCost):
tipAmount = ceil (mealCost*0.2)
return tipAmount

def main():
done = False
while not done:

amount=eval (input (" Enter a meal cost, or 0 to exit:

if amount = 0:
done = True
else:
print ("Your tip should be $%d."%Tip(amount))
print("The total meal cost is $%.2f."%
(amount+Tip(amount)))

main ()

Program 4.3.1: Computing a tip

Note that the argument to function Tip() has a different name than the func-
tion’s parameter: the argument is called amount while the parameter is mealCost.
This is typical; we name the function’s parameter something that is internally
descriptive within the function. The argument can be anything we wish to ap-
ply the function to. At the time of the call the argument is evaluated and it
is this value that is given to the function as an initial value for the parameter;
any name present in the argument is irrelevant once its value is retrieved. For
example, the following calls to function Tip are all valid:

e Tip(23)
e Tip(3+5+8)

e x = 23
Tip(x)

It is generally not a good idea to give the parameters of a function the same
names as variables elsewhere in the program, since this gives the impression
that these are the same variable. The next program prints 2 as the value of
myVariable, even though function Change() seems to change this value to 33.

def Change(myVariable):
myVariable = 33

def main():
myVariable = 2

102 CHAPTER 4. FUNCTIONS

Change(myVariable)
print(myVariable)

main ()

What is happening here is that function Change() and function main() each have
their own variables called myVariable and these variables are unrelated; a change
to one does not affect the other.

If a function has multiple parameters, the arguments in a call to the function
must match the parameters: there must be one argument for each parameter
and they must appear in the same order. For example, function PrintMultiples ()
in the next program has two parameters: the first is a string and the second
an integer. We could call this with PrintMultiples ("bob”, 5) to print the string
"bob bob bob bob bob ", but we couldn’t call it with PrintMultiples (5, "bob™)
or with PrintMultiples (" bob").

def PrintMultiples(string , count):
print((string+" ")xcount)

def main ():
PrintMultiples("bob", 5)

main ()

A parameter is just like any other variable of a function, with the one ex-
ception that it gets an initial value from the argument at the time the function
is called. Like all other variables it can be modified within the function, and
like all other variables it is invisible outside the function. It might be tempting
to write something like the following, but the function call SetTo23(x) does not
change the value of x, in spite of its name.

def SetTo23(x):
x = 23

def main():
x =5
SetTo023(x)

print x

main ()

Function SetTo23() changes its own variable x and has no affect on the variable
x inside function main(). This program prints 5, not 23.

Examples

We will now give several examples of the way programs can be designed with
functions.

4.3. PARAMETERS AND ARGUMENTS 103

First, think back to the prime number programs we wrote in Section 3.4.
Each of these contained a block of code that determined whether a given number
was prime. This task is clearer if it is performed by a function such as the
following:

def IsPrime(number):
This returns True if number is prime,
and False otherwise
for factor in range(2, number):
if number % factor = O0:
return False
return True

Note that this function returns a Boolean value that just says if its argument is
prime or not.

We can put this into a program that checks all the numbers between 2 and
some upper limit and prints the primes. The result is Program 4.3.2:

This prints all of the prime numbers up to
a limit supplied by the user

def IsPrime(number):
This returns True if number is prime,
and False otherwise
for factor in range(2, number):
if number % factor — O0:
return False
return True

def main ():

max = eval(input(” Enter the largest number of check: "))

for x in range(2, max+1):
if IsPrime(x):
print("%d is prime.” % x)

main ()

Program 4.3.2: Improved version of Program 3.4.4

Note how much easier to read this program is than Program 3.4.4. The main()
function consists of an input-statement, and a loop with a conditional print-
statement. The condition on the print-statement is almost grammatical En-
glish: " if IsPrime(x)" is easy to understand. In general, the more natural lan-
guage we can work into a program the easier it is to read, and the more likely
we are to write it correctly in the first place.

104 CHAPTER 4. FUNCTIONS

Similarly, here is a version of Program 3.4.5, which prints a table of the first
N prime numbers. It is tempting to think of adding another function to handle
the printing, but this is more complex than it might seem. All of the variables
of a function go away after the function call, so a function could not easily keep
track of the number of values that are on the current line. One way to handle
that might be to build up a list of all of the values for the current line and
send them to a function to print; that will need to wait until we have a more
thorough treatment of lists in Chapter 5.

This prints the first N prime numbers,
where the value of N is supplied by the user.
The output is printed in C columns.

def IsPrime(number):
This returns True if number is prime,
and False otherwise
for factor in range(2, number):
if number % factor = 0:
return False
return True

def main():
N = eval(input("How many prime numbers do you want? "))
C = eval(input("How many columns of output do you want? "))
X = 2
primeCount = 0
lineCount = 0
while primeCount < N:
if IsPrime(x):

print("%7d " % x, end=""""")
primeCount = primeCount + 1
lineCount = lineCount + 1
if lineCount = C:
print()
l[ineCount =0
x =x + 1
if lineCount !'= 0:
print()

main ()

Program 4.3.3: Improved version of Program 3.4.5

4.3. PARAMETERS AND ARGUMENTS 105

Here is a third example with prime numbers. This time we will find twin
primes: pairs of consecutive odd numbers that are both prime, such as 11 and
13. There is an unproven conjecture in Mathematics claiming that there are
infinitely many twin prime pairs. Our program would require some contorted
code if we only used loops, but with our IsPrime() function it is quite simple.
Our condition for printing a pair (x, x+2) is just that both x and x+2 are prime:
if IsPrime(x) and IsPrime(x+2)

This program looks through the numbers up to a limit
for pairs of twin primes.

def IsPrime(number):
This returns True if number is prime,
and False otherwise
for factor in range(2, number):
if number % factor = O:
return False
return True

def main():
print(" This program looks for twin primes.”)
max = eval(input(” Enter the largest number of check: "))

for x in range(3, max+1):
if IsPrime(x) and IsPrime(x+2):
print (" (%d, %d) are twin primes.” % (x, x+2))

main ()

Program 4.3.4: Finding twin primes

Note that the function IsPrime() is identical in each of these programs. Because
we write functions as stand-alone objects in programs, function definitions can
frequently be copied from one program to another. Once a function is written
and debugged, you can use it in any programming situation where it is appro-
priate. This makes the job of the programmer easier, and makes our programs
much more likely to be correct.

As a final example for this section we will write a program that inputs strings
and determines whether they are palindromes the same forwards as backwards,
such as ”bob” or "racecar”. To make this more interesting, palindromists usually
ignore white space, punctuation and capitalization. Probably the most famous
palindrome in English is ” A man, a plan, a canal: Panama.” Here are some
others: ”Dammit, I'm mad!”, ”Step on no pets.”, "Was it a rat I saw?” and
” Are we not drawn onward, we few, drawn onward to new era?”

Our strategy in developing this program is to write it one step at a time.

106 CHAPTER 4. FUNCTIONS

Whenever we need a new activity in the program we will create a function to
handle it, first writing the call to the function and then writing the function
itself. The steps are:

a. A loop that prompts the user for input, reads strings, and decides if each
string is a palindrome. This should also print the result for the user.

b. To determine whether a string is a palindrome, we can reverse it and
compare that to the original.

c. To handle punctuation and white space, we can walk through the letters
of the string and remove anything that isn’t a letter. Since strings are
immutable, we build up a new string consisting of just the letters of the
original.

d. To handle capitalization, as we build up the new string we insert the lower-
case form of each letter. The string method lower() is useful for this: if s
is a string, s.lower() is a string with the same letters as s, all converted
to lower-case.

The first step is a straightforward application of the input loop model from
Section 3.7:

def main():
done = False
while not done:
phrase = input("Enter a string: ")
if phrase = "":
done = True
else:
if <the phrase is a palindrome >:
print("'%s' is a palindrome."%
phrase)
else:
print("'%s' is not a palindrome."%
phrase)

Program 4.3.5: Palindromes - First Version
This has pseudo-code for the condition on the print statement:
if <the phrase is a palindrome >:

We can define a function to handle this check. To keep its name similar to its
usage in English, we will call the function IsPalindrome(). Its job is to determine
whether the variable phrase holds a palindrome; phrase is the only input it needs.
This means we can state our condition as

if IsPalindrome(phrase):

4.3. PARAMETERS AND ARGUMENTS 107

Our function definition needs a parameter as a placeholder for the argument.
Since this is a string we will just use the letter s:

def IsPalindrome(s):

To conclude the first step, we will make this function return True for all strings.
This allows us to make sure the initial part of our program is working correctly.
The following program isn’t complete, but it is a working program. It allows
the user to enter strings until a blank string is given. It claims that each string
is a palindrome.

def IsPalindrome(s):
This returns True if string s is a palindrome
and False if it is not.
return True

def main():
done = False
while not done:
phrase = input("Enter a string: ")
if phrase = "":
done = True
else:
if IsPalindrome(phrase):
print(”"'%s’ is a palindrome."%phrase)
else:
print ("'%s' is not a palindrome."%phrase)
main ()

Program 4.3.5: Palindromes continued

Our next step is to make the IsPalindrome () function more useful. We defined
a palindrome as a string that reads the same forwards and backwards. This is
easy to code into a function:

def IsPalindrome(s):
if s = Reverse(s):
return True
else:
return False

This involves another function: Reverse(s) is a function we will write that re-
turns the reversal of string vars. How do we do that? It is easy to use a for-loop
to walk through the letters of a string. We want to build up a new string, which
we will call answer, that is the reversal of s. Variable answer starts off as the

108 CHAPTER 4. FUNCTIONS

empty string. At each step we add the new letter onto answer. If we add it onto
the end of answer, we will make an exact copy of string s. If we add the new
letter onto the beginning of answer, we get the reversal of string s. If you don’t
see this, note that the last letter of string s will become the first letter of the
answer, the next-to-last letter of s will be the second letter of the answer, and
so forth.

def Reverse(s):
answer = ""
for c in s:
answer = ¢ + answer
return answer

Adding this to our program gives the first version of our palindrome checker:

4.3. PARAMETERS AND ARGUMENTS 109

def Reverse(s):
This returns the reversal of string s:
if s is 'abc’' this returns ’‘cba’
answer = ""
for c in s:
answer = c + answer

return answer

def IsPalindrome(s):
This returns True if string s is a palindrome
and False if it is not.
s = StripPunctuation(s)
if s = Reverse(s):
return True
else:
return False

def main():
done = False
while not done:
phrase = input("Enter a string: ")
if phrase = "":
done = True
else:
if IsPalindrome(phrase):
print (" '%s' is a palindrome."%phrase)
else:
print("'%s' is not a palindrome."%phrase)
main ()

Program 4.3.5: Palindromes Step 2

For the last steps, we need to eliminate the punctuation. A new function
StripPunctuation () will handle that; this function will take a string s and return
a new string consisting of just the alphabetic letters of s, all in lowercase. We
should think carefully about where to call this function. We could call it in
main(), as soon as we read the string and see that it is not empty:

phrase = input("Enter a string: ")
if phrase =— "":

done = True
else:

phrase = StripPunctuation(phrase)
if IsPalindrome(phrase):

110 CHAPTER 4. FUNCTIONS

This is not good. The user will enter a phrase such as ”Dammitit I'm mad!”
and the program will respond that ’dammitimmad’ is a palindrome. This is
confusing because ’dammitimmad’ is not what the user entered. A more appro-
priate placement for the call to StripPalindrome() is within the IsPalindrome()
function. It is this function that is trying to decide if a string is a palindrome.
Anything it does to the string will be invisible to the main() function. Accord-
ingly, we will keep main() as it stands and change the IsPalindrome() function
to:

def IsPalindrome(s):

s = StripPunctuation(s)
if s = Reverse(s):
return True

else:
return False

All that remains is to write StripPunctuation (). As with Reverse(), this walks
through the letters of string s and places them in an answer string. This time
we add the new letters onto the end of answer, so that we are making a copy
of s. We add only the alphabetic letters to delete the punctuation and white
space elements. How do we tell which are the alphabetic characters? One way
to test of variable ¢ contains a lower-case letter is to determine if it is between
‘a’ and 'z’

if 'a'’'<=cand c <= "z":
We could do the same thing with upper-case letters and get code that starts
if ('fa’<=cand c<= "z) or ('A"<=c and c <= "Z"):

Another way is to use a string method that tests if all of the elements of the
string are alphabetic::

if c.isalpha():

Finally, we use the string method lower() to insure that we add the lower-case
version of each letter to answer. Here is the code for function StripPunctuation ():

def StripPunctuation(s):
answer = ""
for c in s:
if c.isalpha ():
answer = answer + c.lower ()
return answer

4.3. PARAMETERS AND ARGUMENTS 111

This completes the program. Here is complete code for our palindrome program,
including comments to make it more readable:

112 CHAPTER 4. FUNCTIONS

This program reads strings from the user and
says if they are palindromes: the same when
read backwards as when read forwards

def StripPunctuation(s):
This returns a string just like s only all
of the non—letters are removed and the letters
are all changed to lower—case.
answer = ""
for c in s:
if c.isalpha():
answer = answer + c.lower ()
return answer

def Reverse(s):
This returns the reversal of string s:
if s is 'abc’' this returns ’‘cba’
answer = ""
for ¢ in s:
answer = ¢ + answer
return answer

def IsPalindrome(s):
This returns True if string s is a palindrome
and False if it is not.
s = StripPunctuation(s)
if s = Reverse(s):
return True
else:
return False

def main():
done = False
while not done:
phrase = input("Enter a string: ")
if phrase = "":
done = True
else:
if IsPalindrome(phrase):
print(” '"%s' is a palindrome.” % phrase)
else:
print(” '"%s' is not a palindrome.” % phrase)
main ()

Program 4.3.5: Palindromes: final version

4.4. THE CALENDAR PROGRAM 113

4.4 The Calendar program

To illustrate the power of functions, in this section we will develop a useful
program that allows the user to input a date or a month or a year. For a
specific date the program will respond with the day of the week on which this
date occurred or will occur. For example, 2 16 1952 was a Saturday (and my
birthday) while 12 7 1941 was a Sunday (and the day on which Pearl Harbor
was attacked). If the user inputs a month the program will respond with a
calendar for that month. For a year the program responds with 12 calendars
for the 12 months of that year. This is a substantial program with 14 different
functions, but its development is rather straightforward.

Our program is based on one fact and a simple idea. The fact is that January
1, 1800 was a Wednesday. We use this as our starting date because it comes
after the adoption of the Gregorian calendar by England and its colonies in
1752. Wednesday, September 2 1752 was followed by Thursday, September 14
1752 to bring the civil calendar more in line with the seasons. There have been
no significant changes to the Western calendar since.

The idea we will use is to notice that if the number of days between two dates
is divisible by 7 then these dates must occur on the same day of the week. For
example, August 12 and August 26 differ by 14 days; in 2009 they both occur
on a Wednesday while in 2005 they both are on a Friday. For our purposes
”days between” will mean all days including the first date but not including the
second, so the 7 days between August 12 and August 19 are numbered 12, 13,
14, 15, 16, 17, and 18. Our algorithm comes down to counting the number of
days between January 1, 1800 and the date we are interested in, and taking this
count mod 7. If the result is 0 the date occurs on a Wednesday, if it is 1 the
date occurs on a Thursday, and so forth.

The first step is to get input from the user. We know the form of an input
loop; we’ll read dates and respond to them until we get a signal that the user is
done with the program. But how do we read a date? There are lots of possible
formats. We could ask the user for a year, then a month in that year, then a
date in that month, but this seems very awkward and slow. A more intuitive
format from the user’s point of view would be to enter all of the information on
one line: a user could input

9 16 2009

to learn that September 16, 2009 occurs on a Wednesday. We will store the input
values in a list, where the individual entries are numbers are numbers. Lists are
written inside parentheses, as in [9, 16, 2009]. The algorithm for reading the
date is similar to a lot of Python input algorithms. We will first read the entire
line of input, because reading a line of text as a string is easy. There is a string
method called split () that divides a string into ”words”, using white space as
the delimiter between words. If s is the line of input, s. split () is a list of the
words (which in our case are the numbers) of s. A for-loop can run through
this list; we can use the int() function to convert each word into its numeric
value. Altogether, we get the following function for reading a date:

114 CHAPTER 4. FUNCTIONS

def ReadDate ():
s = input("Enter a date in the form md y, \
or a blank to exit: ")
t =]
for x in s.split():
t =t + [int(x)]
return t

This function always returns variable t, which starts as an empty list, and has
numbers added to it. If there is a no input, as will happen when the user enters
a blank line, function readDate() returns an empty list. We can use this as the
exit condition for our program.

Our main() function is our usual input loop, with format:

def main():
done = False
while not done:
date = ReadDate()
if len(date) = 0:
done = True
else:
<print the day for this date>

We will assign a function PrintDay() to the task of printing the day of the
week for a particular date. The information that needs to be sent to this function
are the month, day, and year of the date: these are the first, second, and third
fields that function ReadDate() returns:

def main():
done = False
while not done:
date = ReadDate()
if len(date) = 0:
done = True
elif len(date) = 3:
PrintDay(date[0], date[l], date[2])
else:
print("Bad date.”)

Function PrintDay() holds the basic activity of this program: it takes as argu-
ments a month, day, and year, and prints the day of the week corresponding to
this date. We will divide this into two steps. The hard part is computing the
numeric day of the week: 0 for Sunday, 1 for Monday, and so forth. We’ll create
a function FindDay() for this. Once we have that number, we will give it to a
simple function DayName() to print as a string. This makes function PrintDay()
particularly easy:

4.4. THE CALENDAR PROGRAM 115

def PrintDay(m, d, y):
This prints the day of the week (m,d,y) falls on
day = FindDay(m, d, vy)
print(" That was a %s” % DayName(day))

The DayName() function is also easy:

def DayName(d):
#This returns a string for the name of day d
if d = 0:
return " Sunday”
elif d = 1:
return " Monday"
elif d = 2

<and so forth>

The real work is in writing function FindDay(). This starts by finding the
number of days between January 1, 1800 and day (m, d, y); we will us a function
CountDays() to compute this. We will store this count in variable days. We will
include January 1, 1800 in this count but not day (m, d, y). Recall that January,
1, 1800 fell on a Wednesday; every 7 days after this we are back to a Wednesday.
This means that if days%7 is 0, then (m, d, y) also falls on a Wednesday. On
the other hand, if days % 7 is 1, then (m, d, y) falls on a Thursday; if it is 2

then (m, d, y) is a Friday, and so forth. Here is the code that comes from this
analysis.

def FindDay(m, d, y):
This counts the number of days between (1,1,1800)
and (m,d,y), takes the remainder %7, and
returns 0 for Sundays, 1 for Mondays, etc.
days = CountDays(m, d, y)
day = days%7
if day = 0:
return 3 # Wednesday is day 3 of the week
elif day = 1:
return 4 # Thursday

elif day = 3:

return 6 # Saturday
elif day = 4:

return 0 # Sunday

<and so forth>

Function CountDays() is easier than you might think. Remember that this
function counts the number of days between January 1, 1800 and day (m, d, y).
We can break this into three steps:

116 CHAPTER 4. FUNCTIONS

e The sum of all the days of all the years starting with 1800, up to but
not including year y (we don’t want to include all of year y). We keep
a running total of these, adding 365 for non-leap years and 366 for leap
years.

e The sum of all the days of all the months of year y starting with January,
up to but not including month m. We add each of these onto the total.

e The number of days of month m up to, but not including day d.

The first two of these we accomplish with a loop; the third by adding d—1 onto
our total. The following code does this; we use helper-functions to compute the
number of days in a year (365 if it isn’t a leap year, 366 if it is) and the number
of days in a month (31 for January, 28 for non-leap year Februarys, 29 for leap
year Februarys, 31 for March, etc.):

def CountDays(m, d, y):
This returns the number of days between
(1, 1, 1800) and (m,d,y).
days = 0
for year in range(1800, y):
days = days + DaysInYear(year)
for month in range(l, m):
days = days + DaysInMonth(month, y)
days = days + d-1
return days

Notice how we can use the ability of a computer to execute many small steps
quickly to solve a problem in a way that human would think of solving it. Part
of the art of programming is learning to make use of this ability.

The rest of the program is completely straightforward. The complete pro-
gram is given below. This looks like a lot of code, but the development of it
was not difficult. At each step we write the code for one small portion of the
program. If this is more than just a few lines of code, we break it into pieces
and assign a function to write each piece. Note that we write the call of the
function, and then go back and write the function itself. As long as we have
a clear vision of what each function should do (comments help us to keep that
straight), the individual pieces will all fit together this way we designed them
precisely to do that.

4.4.

THE CALENDAR PROGRAM 117

This program finds the day of the week corresponding to
any specific (m,d,y) date after January 1, 1800.

def

def

IsLeapYear(y):
This returns True if y is a leap year, False otherwise
if y % 400 = O0:
return True
elif y % 100 = 0:
return False
elif y % 4 = 0:
return True
else:
return False

DaysinMonth(m, y):
This returns the number of days in month m of year y.
Of course, the year only matters for February
if m=— 1:
return 31
elif m — 2:
if isLeapYear(y):
return 29
else:
return 28
elif m =— 3:
return 31
elif m — 4:
return 30
elif m = 5:
return 31
elif m — 6:
return 30
elif m=— 7:
return 31
elif m — 8:
return 31
elif m — O:
return 30
elif m = 10:
return 31
elif m=— 11:
return 30
elif m — 12:
return 31
else:
print("daysInMonth: No such month %d” % m)

Program 4.4.1: The Calendar Program - beginning

118 CHAPTER 4. FUNCTIONS

def DayName(d):
#This returns a string for the name of day d

if d = 0:

return "Sunday”
elif d = 1:

return " Monday"
elif d = 2:

return " Tuesday”
elif d = 3:

return "Wednesday”
elif d = 4:

return " Thursday”
elif d = 5:

return " Friday”
elif d = 6:

return " Saturday”

def DaysInYear(year):
This returns the number of days in the given year.
if IsLeapYear(year):
return 366
else:
return 365

def CountDays(m, d, y):
This returns the number of days between
(1, 1, 1800) and (m,d,y)
days = 0
for year in range(1800, y):
days = days + DaysInYear(year)
for month in range(1l, m):
days = days + DaysInMonth(month, y)
days = days + d-1
return days

Program 4.4.1: The Calendar Program continued

4.4.

THE CALENDAR PROGRAM 119

def

def

def

def

FindDay(m, d, y):
This counts the number of days between (1,1,1800)
and (m,d,y), takes the remainder %7, and returns
0 for Sundays, 1 for Mondays, etc.
days = CountDays(m, d, y)
day = days%7
if day = 0:
return 3
elif day = 1:
return 4
elif day = 2:
return 5
elif day = 3:
return 6
elif day = 4:
return 0
elif day =— 5:
return 1
elif day = 6:
return 2
else:
print("FindDay: bad day %d” % day)

PrintDay(m, d, y):

This prints the day of the week (m,d,y) falls on
day = FindDay(m, d, vy)

print(" That was a %s” % DayName(day))

ReadDate ():

This asks the user for a date, then makes a tuple
of numbers out of the user’'s response.

print("Either enter a date in the form md y")

"

s = input("or enter a blank to exit: ")
t =]
for x in s.split():
t =t + [int(x)]
return t

main ():
done = False
while not done:
date = ReadDate()
if len(date) = 0:
done = True
elif len(date) = 3:
PrintDay(date[0], date[l], date[2])
else:
print("Bad date.”)

main ()

Program 4.4.1: The Calendar Program continued

120 CHAPTER 4. FUNCTIONS

4.5 Recursion

One of the most powerful programming techniques involves a function calling
itself; this is called recursion. It is not immediately obvious that this is useful;
take that on faith for now and concentrate first on how to make recursion work.
The utility should become apparent as you see it in action.

Here is a complete program that will serve as our first example of recursion:

def Factorial(n):
if n <= 1:
return 1
else:
return nxFactorial (n—1)

def main():
print(Factorial(4))

main ()

Program 4.5.1: The recursive Factorial function

Before we think about what the program does, let’s concentrate on the
Factorial () function:

def Factorial(n):
if n = 1:
return 1
else:
return nxFactorial(n—1)

Can we see what this function will return for Factorial (1)? Sure; if n is 1 then
the first line: if n == 1 is True so Factorial (1) returns 1.

What about Factorial (2)7 Well, if n is 2 then the test n==1 fails and the
function returns 2x Factorial (1). But we just saw that Factorial (1) returns 1,
so Factorial (2) must return 2.

Factorial (3)? If n is 3 then again n==1 is False and the function returns
3« Factorial (2). We just saw that Factorial (2) returns 2, so Factorial (3) must
return 6.

One more time. If n is 4 then n==1 is False and the function returns
4x Factorial (3). We just saw that Factorial (3) returns 6, so Factorial (4) must
return 24. If we now look at our program, in main() it prints Factorial (4), so
the program prints the number 24 and halts.

Of course, you have surely noticed that Factorial (2) is 2, which is 2x1,
Factorial (3) is 6, which is 32«1, and Factorial (4) is 24, which is 4%3%2x1. Our
function is indeed computing what mathematicians call the Factorial () function.
Factorial (n) is the product of the first n positive integers. This should make

4.5. RECURSION 121

sense: if Factorial (n—1) is the product of the first n—1 positive integers, we
have defined the function so that Factorial (n) is n times the product of the first
n—1 positive integers, and that is the product of the first n positive integers.

Notice that the code for our Factorial () starts with an if statement one
one of whose branches the function returns without calling itself. The values
for which a function returns without recursing are called base cases. We com-
puted Factorial (4) by starting at the base case Factorial (1) and working up
until we reached the Factorial (4) case. Can we go the other way — computing
Factorial(4) the way the computer does?

We start with a definition straight from the function:

Factorial(4)=4xFactorial (3)

We don’t yet know the value of Factorial (3), so we remember where we are and
start a new computation:

Factorial(4)=4xFactorial (3)
Factorial(3)=3xFactorial (2)

We don’t know the value of Factorial (2), so again we remember where we are
and start a new computation:

Factorial(4)=4xFactorial (3)
Factorial(3)=3xFactorial (2)
Factorial (2)=2«Factorial (1)

Finally, we do know the value of Factorial (1):

Factorial(4)=4xFactorial (3)
Factorial(3)=3xFactorial (2)
Factorial (2)=2xFactorial (1)
Factorial(1)=1

We can now work our way back up. Since we know Factorial (1)=1 we can
compute Factorial (2):

Factorial(4)=4xFactorial (3)
Factorial(3)=3xFactorial (2)
Factorial (2)=2xFactorial(1)=2x1=2
Factorial(1)=1

and now we can compute Factorial (3):

Factorial(4)=4xFactorial (3)
Factorial(3)=3«Factorial (2)=3%x2=6
Factorial (2)=2«Factorial(1)=2x1=2
Factorial(1)=1
and finally
Factorial(4)=4xFactorial (3)=4x6=24
Factorial(3)=3«Factorial (2)=3x2=6
Factorial (2)=2xFactorial(1)=2x1=2
Factorial(1)=1

122 CHAPTER 4. FUNCTIONS
Factorial(4)=4*Factorial(3)=4*6=24
Factorial(3)=3*Factorial(2)=3*2=6
Factorial(2)=2*Factorial(1)=2%1=2

Factorial(1)=1

Follow the black arrows down into the recursion, then the red arrows back out.

You can imitate the way a computer executes any recursive function in this
way. It becomes a bookkeeping problem — the difficulty is just in keeping track
of what has been evaluated and where you are in the computation.

Notice that our recursive factorial function started with an if-statement.
This is true of almost all recursive functions. The first question to ask is whether
the argument to the function is one of the base cases. If so we can just return
the answer; it is only when the argument is not a base case that we need to
recurse. Notice also that in order for the recursive function call to terminate,
the argument in the recursive call must be closer to a base can than the initial
argument was. To compute Factorial (n) we recurse on Factorial (n—1). If n is
larger than 1, n—1 is closer to the base case of 1 than n is. On the other hand,
if n is not positive then n—1 moves farther away from 1, and as a result the
Factorial () function never halts if you give it a non-positive argument.

The aspect of recursion that students find hardest is writing recursive func-
tions. This almost seems like magic. Here is a way to think about the process:

e Find the base case. This usually tells you what the parameter of the
function should be. Start the recursive function with an if-statement that
describes how to perform the computation for the base case.

e Handle the recursive case. Describe how to perform the computation if
the parameter is not the base case, in terms of parameters that would be
closer to the base case.

e Be sure that the recursion always works down to one of the base cases.

Example 1:Write a recursive function that returns the length of a string.
Strings can be long: ”Marvin Krislov is President of Oberlin College”, or short:
”bob”. Short ones seem easier to deal with than long ones. The shortest possi-
ble string is ””, the empty string. We’ll take that as our base case. If the string
is empty is our base case, our recursive parameter must be the string and our
function starts

def length(string):
if string = "":
return 0
else:

4.5. RECURSION 123

Now we need to handle the recursive cases: the cases where the base case does
not apply. This means we have a string whose length is not 0. The length can’t
be negative, so our string must have positive length. To make use of recursion,
we want to find its length in terms of the lengths of strings closer to the base
case: i.e., string with shorter length. With a little thought you can see that
the length of the string is 1 more than it would be if we removed one letter.
One way to remove a letter is to make use of our string indexing operations:
string [1:] consists of all of the letters of string after the first. We add this to
our code with one line:

def length(string):
if string = "":
return 0
else:
return 1 + length(string[1:]

That is our function. Does it always lead us to a base case? Sure; for any
starting string we remove one letter at a time until we get to the empty string:

length("bob”)=1+length("ob”)=1+2=3
length("ob”)=1+length("b")=1+1=2
length("b")=1+length(”)=1+0=1

length(™)=0

Example 2: Write a recursive function to make the Fibonacci sequence 0,1,1,2,3,5,8,13.....
The Fibonacci sequence is easy to describe in English: it starts with 0 and 1,

and then every subsequent number is the sum of the two previous numbers.

Since ”starts with 0 and 1”7 is a statement about position in the sequence, we

will write a function Fib(n), where n refers to position in the sequence: Fib(0) is

the first number in the sequence, Fib(1) is the second, and so forth. Our English
description of the problem gives us two base cases:

def Fib(n):
if n==0:
return 0
elif n==1:
return 1
else:

We will look later at whether we actually need both of the base cases. Our
English description is easy to translate into the recursive case of our function.
The description says ”every subsequent number is the sum of the two previous
numbers.” If n is the index of the number we are currently calculating, the
indexes of the two previous numbers are n—1 and n—2. In other words, our

124 CHAPTER 4. FUNCTIONS

description says Fib(n)=Fib(n—1)+Fib(n—2). We translate this into code by
making the right hand side the value that we return:

def Fib(n):
if n==0:
return 0
elif n==1:
return 1
else:

return Fib(n—1)+Fib(n-2}

It is easy to see that we need both of our base cases. The calculation of
Fib(2 uses both of them: Fib(2)=Fib(1)+Fib(0). If we omitted one of them
as a base case and tried to calculate it recursively we would get into trou-
ble. For example, if we tried to calculate Fib(1) recursively we would get
Fib(1)=Fib(0)+Fib(—1)=0+Fib(—2)+Fib(—3)=... and this clearly will never ter-
minate. Are our two base cases enough? Yes; the calculation works down
through even numbers and odd numbers and our base cases of 0 and 1 termi-
nate both the evens and the odds.

Here is a sample calculation with our function

Fib(4)=Fib(3)+Fib(2)=2+1=3

Fib(0)=0

Example 3: Write a recursive function to solve the Towers of Hanoi puzzle
Towers of Hanoi is a puzzle game invented in1883 by the French mathematician
Edouard Lucas. In this game there are three ”"towers” or vertical sticks that
can hold a set of concentric disks. At the start of the game the disks are all on
one tower, in order of decreasing size with the largest disk at the bottom and
the smallest at the top:

4.5. RECURSION 125

A B C

The goal of the game is to move all of the disks from their starting tower to
another tower, using the following three rules:

1. Only one disk can be moved at a time.
2. Only the top disk on a tower can be moved.

3. A disk can only be placed on an empty tower or on a larger disk, never
on a smaller disk.

Lucas’s game included a story, supposedly taken from the writings of an
eminent Chinese monk who lived in Hanoi, that there is a temple in India where
the Brahmin monks are working on a version of this puzzle with 64 golden disks.
A prophecy claims that when the monks finish solving the puzzle the world will
come to an end.

126 CHAPTER 4. FUNCTIONS

Just for fun, here is the cover of the box containing Lucas’s first version of
the puzzle:

F\BLB

A RappoRTE DU TON .
28 Pup, LE PROFE S5EN Mf.r Lﬁkusl:nEsm,n_‘}f-_
T‘\' STk

Now we need to find a solution. As usual we’ll start thinking about base
cases. An easy setup to solve is when we have only one disk on the starting
tower; we can move that to either of the other towers in one step. However,
an even easier setup is when we have no disks at all; we can solve that without
doing anything! Both of these cases refer to the number of disks on the starting
tower. If you think about it, the only difference in two distinct starting states
is the number of disks they contain. So we’ll include the number of disks as
a parameter on our Hanoi() function. Since our case with 0 disks requires no
work, we can start the function as follows

4.5. RECURSION 127

def Hanoi(n):
#So0lves Towers of Hanoi with n disks on the starting tower
if n>0:

This, however, is not enough. We need to know not just how many disks are on
the starting tower, but the situations with the other towers as well. Once we
are into the recursion we need to move disks not just from the starting tower,
but from all three towers. So we will include all three towers as parameters:

def Hanoi(n, source, destination, free):
Moves n disks from the "source” tower to the
"destination” tower, making use of the "free’
if n>0:

’

tower.

Now we are rolling. We need to express how to move n disks from the source
to the destination in terms of moving small numbers of disks from one tower to
another. This is easy:

1. Move n—1 disks from the source tower to the free tower.
2. Move 1 disk, the largest, from the source tower to the destination.

3. Move n—1 disks from the free tower to the destination.

For example, suppose we start with 3 disks on tower A, the other towers empty:

A B C

We will think of A as our source tower, B as our destination and C as free. We
first recursively move 2 disks from A to C:

A B C

Next we move the largest disk from A to B:

128 CHAPTER 4. FUNCTIONS

A B C

Finally, we move those 2 disks that we placed onto the ”free” tower C to the
destination tower:

A B C

To turn this into code, we just need to realize that the only actual disk moves
are occurring on step (2), when we move one disk from the source tower to the
destination tower. Everything else is just organization for the recursive calls.
We will handle step (2) with a print statement. Here is the complete code for our
solution, along with a typical main() function that solves the puzzle by moving
3 disks from tower ”A” to tower "B”:

def Hanoi(n, source, destination, free):
Moves n disks from the "source” tower to the
"destination” tower, making use of the "free” tower.

if n > 0:
Hanoi(n—1, source, free, destination)
print("%s —> %s"%(source, destination))

Hanoi(n—1, free, destination, source)

def main():
Hanoi (3, "A", "B", "C")

main ()

Here is a trace of this program. Because the Hanoi() function doesn’t return
anything, we need to use a slightly different style of trace. This time we indent
to show levels of recursion. To make it a little easier to read we’ll leave the

4.5. RECURSION 129

quotes off the strings. At the top level Hanoi(3,A,B,C) is performed with 3 calls:

Hanoi(2,A,C,B)
print A——> B
Hanoi(2,C,B,A)

We write those three at the same indentation level, then go in a further level for
the recursive calls for Hanoi(2,A,C,B) and Hanoi(2,C,B,A). Here is the resulting
trace:
Hanoi(3,A, B, Q)
Hanoi(2,A,C,B)
Hanoi(1,A,B,C)
print A--->B
print A--->C
Hanoi(1,B,C,A)
print B-—->C
print A-—>B
Hanoi(2,C,B,A)
Hanoi(1,C,A,B)
print C—-->
print C-->B
Hanoi(1,A,B,Q)
print A-—->B

We will walk through the 7 steps. We start with

A B C

The first move is A—>B:

130 CHAPTER 4. FUNCTIONS

Then A—>C:

A B C
B—>C

A B C
A->B:

4.5. RECURSION 131

A B C

And finally A—>B:

A B C

It is not hard to show that solving the puzzle with n disks takes 2™ — 1 moves.
Those 64 disks the monks are supposedly moving need about 10'° individual
moves. There are about 3 * 107 seconds in a year, so if the monks were moving
one disk per second it would take roughly 3 x 10'! years to solve the puzzle.
Sadly, astrophysicists currently estimate that the sun will burn out in on 5 % 10°
years, so the monks really need to speed up.

132

CHAPTER 4. FUNCTIONS

4.6 Exercises

Write a complete Python program to solve each of the following problems.

4.1.

4.2.

4.3.

4.4.

4.5.

Write a program with a function next(n) that returns the number after n
(i.e, it returns n+1). Give your program the following main() function:

def main():
print (next (35))
print (next(next(23)))

Your program should print the value 36, then 25.

A perfect number is one whose factors (including 1 but not the number)
sum to the number itself. For example, the factors of 6 are 1, 2, and 3,
which sum to 6. The factors of 28 are 1, 2, 4, 7, which sum to 28. The
factors of 24, however, are 1, 2, 3, 4, 6, 8, and 12; these sum to 36, so
24 is not perfect. Write a function isPerfect (x) that returns True if x is
a perfect number, then incorporate this in a program that finds all of the
perfect numbers less than 10,000.

Write a function printTime(minutes) that inputs a number of minutes and
prints this in terms of hours and minutes. For example, printTime(325)
should print "6 hours and 25 minutes."

Write a program with area functions for squares, circles and rectangles.
You might call these functions AreaSquare(side), AreaCircle(radius) and
AreaRectangle(length, width). If you call these functions within the main()
function:

def main():
print (AreaSquare(4))
print(AreaCircle(10))
print(AreaRectangle(6, 7))

the program should print 16, then 314.16, then 42

Write a function decade(year) that takes as argument a year and returns
the start of the decade containing this year. For example, for argument
1968 the function should return 1960; for 1999 it should return 1900,
and so forth. There are several ways to do this: you can either use the %
operator (1968 % 10 is 8, so 1968 — (1968%10) is 1960) or you can have a
loop that counts down by 10’s from some upper limit (say 3000), and stops
when it gets a decade smaller than or equal to the year. Alternatively,
you could count down from the year you start, looking for a year that is
divisible by 10.

Once you have function decade(year) written you can add the following
main() function:

4.6. EXERCISES 133

def main():
y =1
while y != 0:
y = eval(input("Enter a year, 0 to exit: "))
if y I= 0:
print ("%d was part of the %d's" %(y,decade(y)))

On an input like 1968 the program will print "1968 was part of the
1960°s." Of course, for the 1960’s it should add "Now that was a groovy
decade."

4.6. Write a function deleteB(string) that removes all the instances of the
letter "b" from a string and returns the result. Here are two hints. First,
you can use a for-loop to run through the letters of a string:

for letter in "blah”:
print(letter)

will print first "b", then "1", then "a", then "h". Second, you can use
concatenation to build up strings. Start variable result as the empty
string:

non

result =

Then use the +-operator to add letters onto result. For example, you can
copy a string with

result =
for letter in "blah”:
result = result + letter

Finally, give your program a main() function to test this out:

def main():
print(deleteB("bob is a blob"))

will print "o is a lo", a far nicer string.

134 CHAPTER 4. FUNCTIONS

Chapter 5

Testing and Debugging

You've written it so it must work, right? By now you know that is not necessarily
true. We all make mistakes. To be a successful programmer you need to be able
to reliably find and fix your mistakes. This chapter deals with two related
efforts: writing test cases to determine if your program is running correctly, and
finding the source of the problem when testing reveals that something is wrong.

Python has two built-in systems to help you with debugging. You should
not need either of these for short programs, but they come in handy as your
programs become longer and more complex. Knowing how to use a debugger is
a good skill for any programmer. Just don’t fall into the trap of relying on a
debugger instead of writing your code carefully.

135

136 CHAPTER 5. TESTING AND DEBUGGING

5.1 Testing Your Code

Probably the most common mistake made by beginning programmers is insuf-
ficiently testing their code. Most of us need to believe what we are doing is
correct or we’ll never do anything. It is hard to surrender that certainty when
it comes time for testing. Too many beginners are satisfied with one or two test
cases; sometimes students even hand in code without ever running it and are
surprised to hear that it doesn’t work correctly. If you want to be a successful
programmer, integrate a simple testing methodology into your coding practice.
Far from slowing you down; you’ll find that this helps you to develop good code
faster than you were previously writing buggy code.

When To Test

There are three issues with testing: when to test, which test cases to use, and
what to do with the information if a test comes back with a different response
than you expect. The when question is easy: test continually as you develop.
Beginners tend to write an entire program and then test it. If you do that,
when a test fails every line of the program is a potential source of the problem.
If you test as you develop and are confident that the program is correct before
you add a new function, if errors appear when you test after that addition you
know the likely source of those errors.

For example, think back to Program 4.3.5, which asks the user to enter
strings and says whether each string is a palindrome. To test this program we
need a more precise statement of what it should do. Here is such a statement:

Write a program that repeatedly asks the user to input a string; the input loop is
terminated by an empty string. For each non-empty string the program should strip
off any punctuation characters and determine if what is left forms a palindrome. The
program’s response to a non-empty input < s > should be "< s > is a palindrome.”

or < s > is not a palindrome.”

What follows is an outline of the program we wrote to solve this problem.

5.1. TESTING YOUR CODE 137

This program reads strings from the user and
says if they are palindromes: the same when
read backwards as when read forwards

def StripPunctuation(s):
This returns a string just like s only all
of the non—letters are removed and the letters
are all changed to lower—case.

def Reverse(s):
This returns the reversal of string s:
if s is ’'abc’' this returns 'cha '’

def IsPalindrome(s):
This returns True if string s is a palindrome
and False if it is not.
It calls StripPunctuation to remove all of the
non—letters from s

def main():
This has the input loop. It reads strings from
the user, tests if they are palindromes, and
prints the answer. The loop terminates when it
gets an empty string.

main ()

The skeleton of Program 4.3.5

When we developed this program in section 4.3 we first wrote main() with a
stub, or dummy function, for IsPalindrome(), then we wrote both IsPalindrome()
and Reverse(), then finally StripPunctuation(). We would test the program in
exactly these pieces: one set of tests to ensure that our main() loop is working
correctly, one set of tests after completing IsPalindrome() and Reverse(), to
ensure that the main functionality of our program is correct, and a final set of
tests on the completed program.

Test Cases

Picking out test cases for a new component of your program involves thinking
about what it does. There are three broad categories of test cases:

e Typical cases

138 CHAPTER 5. TESTING AND DEBUGGING

e Boundary cases
o Extreme cases

Typical cases are test cases that exercise the basic functionality of your code.
You should use enough to cover all of the possibilities several times. For example,
if you are testing a function that determines if a number is prime, you should test
with several numbers that are prime and several numbers that are not. If you are
testing a function that decomposes a string into a list of English words (such
as turning ”thisisatest” into [*this”, ”is”, ”a”, "test”], you might use strings
that are single English words, such as ”bob”, strings with two words, such as
"testtwo”, strings with a larger number of words, such as ” onetwothreefourfive”,
and strings that can be decomposed in multiple ways, such as ”onestone” (which
could be ["one”, "stone”] or ["ones”, "tone”]). You should also include negative
test cases: strings that don’t contain any word, such as ”pxq” and strings that
contain some words but can’t be completely decomposed into words, such as
"testfailswxq”.

Boundary cases apply in situations where there is a range of possible inputs.
Bugs frequently hide at the edge of the range of possibilities. For example, with
a function that tests for prime numbers, the bottom end of the range would
be in the numbers 1 and 2; 1 is generally not considered to be prime while 2
is definitely prime. You should test both. For the program that decomposes
strings, you should test both the empty string and strings of one letter. If the
unit you are testing is based on a loop, make sure it is both starting and stopping
at the right point. A common error results when a for-loop goes one step too
far, or stops one step earlier than it should. Try to find test cases that check
for this.

FExtreme cases test input you might not ordinary think about. For example,
with the prime number tester, what will it respond if you give it a negative
number? There is no a priori right answer, but you should code your programs
to handle smoothly unexpected input. Programs should not crash, regardless
of the input they are given. For the prime number function you should include
0 and a negative number as test cases. For the string decomposition function
you should test the empty string. You should also test very large inputs to
ensure that you haven’t unintentionally placed a limit to the size of the in-
put your program can handle. There is no upper end to the range of prime
numbers, but you might test a very large number to ensure that you haven’t
accidentally put a limit on the size of the numbers your function can handle:
15458863 is the millionth prime number. As with numbers there is no upper
boundary on the size of strings but you should test a very large input, such as
”Ireadthenewstodayohboy Aboutaluckymanwhomadethegrade Andthoughthenews-
wasrathersad WellljusthadtolaughIsawthephotographHeblewhismindoutinacarHe-
didn’tnoticethatthelightshadchanged Acrowdofpeoplestoodandstared They’dseen-
hisfacebeforeNobodywasreallysurelfhewasfromtheHouseofLords” Depending on
the algorithms you are using, large inputs sometimes are processed very, very
slowly; when testing you need to take this into account and use large, but still
practical, test cases.

5.1. TESTING YOUR CODE 139

Lets’ consider the palindrome program we wrote in section 4.3 and outlined
above. We test this in three stages.

Phase one We test just the main() function, with a stub for the IsPalindrome()
function. Here we just want to be sure the main loop is working.

Typical cases "test”, ”this is a test”
Boundary cases the empty string

X X X X X 1 x fox i X X
Extreme cases ”fox socks box knox knox in box fox in socks knox on fo
in socks in box”

Phase two We test the Reverse() and IsPalindrome() functions. The pro-
gram should now recognize palindromes. We haven’t yet written the
StripPunctuation() function, so we will use test strings that have only
alphabetic letters.

2) » ”

Typical cases "madam”, ”maddam”, "maday”

Boundary cases the empty string, ”a”

N

Extreme cases ”amanaplanacanalpanama”, ”abcdefghijklmnopqrstuvwxyzyxwvut-
srqponmlkjihgfedcba”

Phase three Now we test the whole program, with special emphasis on the
StripPunctuation () function:

Typical cases ” A man, a plan, a canal: Panama!”, ”Drat such custard”,
”abc;a”

Boundary cases the empty string, ”a”

xtrem; man n m m
Extreme cases ”A man, a plan, a cat, a ham, a yak, a yam, a hat, a
canal-Panamal!”

How to test

One simple way to manage testing, which works in any programming language,
is to develop your program in such a what that it can always be run. That is how
we developed program ??. We even implemented a stub for the IsPalindrome()
function so that main() would run when we hadn’t written the rest of the code.
This leads to a program design strategy known as Top-Down Design — at each
step we implement one part of the program (typically one function), breaking
that part down into steps that are each represented by functions. We give stubs
for the new functions. This continues until the steps that we need to implement
are so simple that we can code them without calling any new function. Some
languages, though not Python, require function definitions to be present in the
code before the calls to those functions. If you do this even though Python
doesn’t require it (in larger programs it does help you to find function defini-
tions), Top-Down Design results in you writing the code file backwards — from
the end to the start. As long as you use a good program editor, such as ldle,

140 CHAPTER 5. TESTING AND DEBUGGING

that doesn’t present any difficulties. If you use this strategy in each phase of
testing you only need to run the program and type in the test cases.

An alternative for testing Python code makes use of Python’s interactiv-
ity. When we run a program in Idle, the entire program is loaded into mem-
ory. When the program stops running, it stay’s in Idle’s memory. Individ-
ual functions can still be called as long as you give them appropriate argu-
ments. For example, if you run program ?? and immediately enter the empty
string, at the prompts you can directly call the Reverse(), IsPalindrome(), and
StripPunctuation () functions. For example, here is a typical interaction:

When I run the program it types the program’s prompt for input:

Enter a string:

I press the Return key to enter the empty string and the program halts. Idle
then gives me a prompt:

>>>
I want to see the result of reversing a string, so at the prompt I type
>>> Reverse("abc")

Idle responds by printing the result of calling Reverse(”abc") and then another
prompt:

"cba’
>>>

I next check out IsPalindrome() by typing at the prompt
>>> |sPalindrome("bob")
to which Idle replies

True
>>>

Finally, T try calling StripPunctuation():
>>> StripPunctuation("Naomi did | moan?”)
and Idle responds

"naomididimoan’
>>>

In this way we can quickly and easily test a variety of functions.

Debugging — making use of testing results

No amount of testing can show that code is bug-free. Testing only tells us about
the presence of errors, not their absence. Most students don’t want to see it
this way, but a successful test is one that reveals a problem. So celebrate when
a test comes back with the wrong answer: you found a bug! But now, what do

5.1. TESTING YOUR CODE 141

you do? Fortunately, 99% of all bugs can be fixed by just carefully reading the
code. If you have followed our methodology for developing programs the test
that failed should involve only a small amount of new code. All of the prior code
should have been thoroughly tested in earlier testing phases, so the potential
source of the bug should be easy to localize. First, take a minute to find the
simplest example you can of input that fails. If the problem is a function like
StripPunctuation (), it is a lot easier to to work with a string of 2 or 3 characters
than one of 15. Now it is just a matter of thinking carefully about your code.
Check your logic; does the algorithm you are using really do what you think?
Try stepping through the guilty function on paper, working through all of the
steps of the example that failed. If done carefully, this almost always finds the
problem. In tricky situations it helps if you can find two examples, only one
of which runs correctly. If you can find why one succeeds and one fails you
will probably find the bug. Don’t give in to the temptation of monkey-coding
— a cycle of random changes to the code followed by quick tests. This usually
introduces more new bugs than it fixes. Stay in control of your code and don’t
make a change until you are confident it is correct. Any program you are asked
to write in an introductory course will be short enough that you can keep it
all in your head at one time. It is much faster to reason your way through the
program than to complete it through arbitrary modifications.

The next two sections discuss debuggers, which are tools designed to help
with the debugging process. These can be very helpful for longer programs.
You probably won’t need them for a first programming course, but some people
find them helpful. Use them if you wish, but don’t rely on them as a substitute
for careful reading.

142 CHAPTER 5. TESTING AND DEBUGGING

5.2 The Shell Debugger

A debugger is a software tool that helps programmers find bugs in complex
programs. This and the next section look at two simple debuggers that are
standard parts of Python. A word of caution before we start: you should not
let yourself become too dependent on a debugger. When you are starting out as
a programmer, it is much more important to learn to read your code carefully
than to become proficient with debugging tools. Good programmers write code
that is easy to read; once you know how the various statements of Python work,
errors should jump out at you. There is no program in all of these notes for which
a debugger is a necessary part of the program development. Still debuggers are
handy tools that can come to your rescue in those rare times when you just
don’t see what the problem is with your code. So use a debugger sparingly, but
don’t hesitate to use it when it will help.

There are two standard debuggers for the Python. One of these is built into
IDLE and the Python shell. The other is a module called "Pdb”. The shell
debugger is simpler to use and has fewer features, so we will look at it first. The
next section discusses Pdb.

Suppose you are working with the following program:

def IsPrime(x):
for d in range(2, x):
if x%d = 0:
return False
return True

def PrintPrimes(N):
for num in range(2,N+1):
if IsPrime(num):
print(num)

def main():
PrintPrimes (100)

main ()

Program 5.2.1: Finding Prime Numbers

To use the shell debugger your program must be loaded into the system’s mem-
ory. The easiest way to achieve this is to run the program from IDLE: just
select Run Module from the Run menu. You need to run the program through
to completion, so if your program expects input from the user, give it input
until the program stops executing. Then in the Debug menu of the shell select
the Debugger option. A Debug Control window will pop up:

5.2. THE SHELL DEBUGGER 143

r S -_— 7 . " 2

7& Debug Control Bes” o * L g
¥ Stack [Source

Go | Step | O\rerl Outl Quitl
¥ Locals [Globals

(Mone) ;I

Locals
Mone LI

To start debugging you need to restart your program. The program starts wtih
a call to main() so at the debugger prompt in the shell we type

>>> main ()

The Debug Controls window changes to include some information about the
program.

-

%4 Debug Control ; [

¥ Stack [Source

Gol Stepl O\.rerl Outl Quitl
¥ Locals | Globals

<pyshell#0>:1: <module>()

'bdb'.run(), line 383: exec cmd in globals, locals ;I
i <medule=(), line1: main()

Locals
IsPrime <function IsPrime at 0x02A4DET0> =
PrintPrimes <function PrintPrimes at 0:02A4DEBD >

_ builtins__ <module’'_builtin_' {built-in)=
doc None
__hame__ '_main_'

_ package__ None

main <function main at 00244 DEF0> LI

L -

There are five buttons at the top of this window that control the actions of the
debugger. They are

144 CHAPTER 5. TESTING AND DEBUGGING

Go This causes execution of the program to resume and run until the program
finishes.

Step This causes the next instruction in the code to be executed. If that in-
struction is a function call, control changes to the first line of that function.

Over This is similar to Step, only function calls are evaluated rather than
stepped into.

Out This causes the rest of the current function to be executed. The program
halts as soon as it returns from the current function.

Quit This stops the execution of the program and halts the debugger.

We will now go through a long series of steps examining our prime-generating
program in the debugger. When we Step into main() we see:

M B
74 Debug Control - - — EIEM

¥ stack [Source
¥ Locals | Globals

Gol Stepl Overl Outl Quitl

primes.py:13: main()

‘bdb'.run(), line 383: exec cmd in globals, locals ;I
'__main__".<module> (), linel: main()

= '__main_".main(), line 13: PrintPrimes(100)

Locals

|»

We now Step into PrintPrimes with argument 100:

5.2. THE SHELL DEBUGGER 145

- (= [© o]
74 Debug Control dl e - =
¥ Stack [Source
Gol Stepl O\.rerl Outl Quitl
¥ Locals I Globals
primes.py:8: PrintPrimes()
‘bdb'.run(), line 383: exec omd in globals, locals —
' main_".<module> (), line1: main()
'_main__".main(), line 13: PrintPrimes(100)
> '_main__".PrintPrimes(), line & for num in range(2 N+1}):
|
‘ I
I Locals i
M 100 a I
= ——————————————

You can see the value of N at the bottom of the screen. The first line of

PrintPrimes is a for-loop. Initially the loop variable num has no value. After we
Step again:

74 Debug Control dl . -. - Eléu
¥ Stack [Source
¥ Locals | Globals

Gol Stepl O\.rerl Outl Quitl

primes.py:9: PrintPrimes()

'_main_".<module> (), line1: main()
in(), line 13: PrintPrimes(100)
rintPrime neD: if IsPrime{num):

Locals

‘bdb'.run(), line 383: exec cmd in globals, locals = |
|

N 100 |
|

num 2

we see that num has the value 2 and we call IsPrime(num). The next Step takes
us inside funciton IsPrime

146 CHAPTER 5. TESTING AND DEBUGGING

74 Debug Control s S [E=NEER

v Stack [Source

Gol Stepl O\.rerl Outl Quitl
¥ Locals [Globals

primes.py:2: IsPrimef)

‘bdb'.run(), line 383: exec cmd in globals, locals d
__main__".<module> (), line 1: main()
'_main__".main(), line 13: PrintPrimes{100)
__main__".PrintPrimes(), line 9 if IsPrime(num):
> '_main_'IsPrime(), line 2: for d in range(2

Locals

x2

|»

The for-loop is vacuous since the range(2,2) is the empty list, so IsPrime returns
True and we go back to function PrintPrimes:

74 Debug Control s S =N
¥ stack [Source
¥ Locals | Globals

Gol Stepl Overl Outl Quitl

primes.py:5: IsPrime()

‘bdb'.run(), line 383: exec cmd in globals, locals ;I
'__main__".<module> (), linel: main()
__main__".main{), line 13: PrintPrimes(100)

__main__".PrintPrimes(), line 9 if IsPrime(num):
> '__main__"IsPrime{), line 5: return True

Locals

B

|»

5.2. THE SHELL DEBUGGER

main__".main(}, line 13: PrintPrimes(100)
(), line 10: print num

147

76 Debug Control s S [E=EE

¥ Stack [Source
Gol Stepl O\.rerl Outl Quitl

¥ Locals I Globals
primes.py:10: PrintPrimes()
‘bdb'.run(), line 383: exec omd in globals, locals d
' main_".<module> (), line1: main()

Locals

N 100

num 2

|»

When we execute the print instruction the value of num, 2, is printed in the

shell and we go to the next instruction:

74 Debug Control s S .

v Stack [Source

Gol Stepl O\.rerl 0ut| Quitl
¥ Locals | Globals

primes.py:8: PrintPrimes()

‘bdb'.run(), line 383: exec omd in globals, locals
'_main_".<maodule> (), line1l: main()

main__".main{), line 13: PrintPrimes(100)

> '_main__".PrintPrimes(), line & for num in range(2, N+1}):

Locals

N 100

num 2

The next value of num is 3:

148 CHAPTER 5. TESTING AND DEBUGGING

74 Debug Control s S [E=NEER
v Stack [Source
¥ Locals [Globals

Gol Stepl O\.rerl Outl Quitl

primes.py:9: PrintPrimes()

‘bdb'.run(), line 383: exec cmd in globals, locals d
'__main__".<module> (), linel: main()

__main__".main{}, line 13: PrintPrimes(100)

> '_main__".PrintPrirr ne9: if IsPrime(num):

Locals

N 100

nurm 3

|»

This time we will step Over the call to IsPrime(num). This returns True since 3
is prime and we come to:

74 Debug Control s S L= | 2
¥ Stack [Source
¥ Locals [Globals

Gol Stepl O\.rerl Outl Quitl

primes.py:10: PrintPrirmes()

'bdb".run(), line 383: exec cmd in globals, locals ;I
'_main_".<module=(), linel: main()

__main__".main(), line 13: PrintPrimes(100)
> '__main_".PrintPrirr , line 10: print num

-

Locals

N 100 El

nurm 3

When we Step again num is printed, and we are back to our main for-loop:

5.2. THE SHELL DEBUGGER

& Debug Control 0

¥ Stack [Source

Gol Stepl O\.rerl Ou‘tl Qui‘tl
¥ Locals I Globals

primes.py:8: PrintPrimes()

‘bdb'.run(), line 383: exec omd in globals, locals

__main__".<module>(), line 1: main()
main__".main(}, line 13: PrintPrimes(100)
line 8: for num in range(2, N+1}:

i
|
| -
Locals
N 100 =
| num 3

We now have a sequence of Steps with the value of num at 4:

¢ Debug Control s S .

¥ Stack [Source

Gol Stepl Overl 0u‘t| Qui‘tl
¥ Locals | Globals

primes.py:2: PrintPrimes()

‘bdb'.run(), line 383: exec cmd in globals, locals
__main__".<module> (), line 1: main()
'__main__".main(), line 13: PrintPrimes(100)

> '_main__".PrintPrimes(), line 9: if IsPrime(num):

Locals

N 100

| I"IUI"I"I4

|»

149

150 CHAPTER 5. TESTING AND DEBUGGING

74 Debug Control s S [E=NER
v Stack [Source
¥ Locals [Globals

Gol Stepl O\.rerl Outl Quitl

primes.py:2: IsPrimef)

‘bdb'.run(), line 383: exec cmd in globals, locals d
__main__".<module> (), line 1: main()
'_main__".main(), line 13: PrintPrimes{100)
'__main__".PrintPrimes(), line 9: if IsPrime(num]:
> '_main_'IsPrime(), line 2: for d in range(2

| -
Locals

x4 =

74 Debug Control s S - EI&M

¥ Stack [Source

Gol Stepl O\.rerl Outl Quitl
¥ Locals [Globals

primes.py:3: IsPrime()

'bdb".run(), line 383: exec cmd in globals, locals ;I
'_main_".<module=(), linel: main()
__main__".main(), line 13: PrintPrimes(100)
'_main__".PrintPrimes(), line &: i
rime(), line

IsPrime(num):

Locals

d2 El

x4

When x is 4 and d is 2, x%d==0 is True, so the function returns False

5.2. THE SHELL DEBUGGER 151

76 Debug Control s S [E=EE

¥ Stack [Source
Gol Stepl O\.rerl Outl Quitl
¥ Locals I Globals

primes.py:4: [sPrimef)

‘bdb'.run(), line 383: exec omd in globals, locals d
__main__".<module>(), line 1: main()

'_main__".main(), line 13: PrintPrimes(100)
'__main__".PrintPrimes(]), line 2: if IsPrime(num]:
> '__main__"IsPrime(), line 4: return False

Locals
d2 [=]
x4 -]
and we are back to the main for-loop of function PrintPrimes:
74 Debug Control oo B

¥ Stack [Source

Gol Stepl O\.rerl Outl Quitl
¥ Locals | Globals

primes.py:8: PrintPrimes()

‘bdb'.run(), line 383: exec cmd in globals, locals ;I
__main__".=module> (), line 1: main()
main__".main(), line 13: PrintPrimes(100)

line 8: for num in range(2,N+1}):

-

Locals

N 100

(=]
num 4

Now we have another sequence of steps to determine if 5 is prime:

152 CHAPTER 5. TESTING AND DEBUGGING

%4 Debug Control s S Eléu
v Stack [Source
¥ Locals [Globals

Gol Stepl O\.rerl Ou‘tl Qui‘tl

primes.py:9: PrintPrimes()

‘bdb'.run(), line 383: exec cmd in globals, locals d
'__main__".<module> (), linel: main()

__main__".main{}, line 13: PrintPrimes(100)
= '__main_".PrintPrirr ne9: if IsPrime(num):

L
|
| -
Locals
Mo 100 =
| num 3 -]
%4 Debug Control s S Eléu

v Stack [Source

Gol Stepl O\.rerl Ou‘tl Qui‘tl
¥ Locals [Globals

primes.py:2: IsPrimef)

‘bdb'.run(), line 383: exec cmd in globals, locals d
'__main__".<module> (), linel: main()
'_main__".main(), line 13: PrintPrimes{100)

__main__".PrintPrimes(), line 9 if IsPrime(num):

> '_main__"IsPrime(), line 2: for d in range(2

Locals

x5

|»

First we try to divide 2 into 5:

5.2. THE SHELL DEBUGGER 153

%4 Debug Control s S Eléu
¥ Stack [Source
¥ Locals I Globals

Gol Stepl O\.rerl Ou‘tl Qui‘tl

primes.py:3: [sPrime)

‘bdb'.run(), line 383: exec omd in globals, locals d
__main__".<module>(), line 1: main()
'_main__".main(), line 13: PrintPrimes(100)
'__main__".PrintPrimes(]), line 2: if IsPrime(num]:

> '__main__"IsPrime(), line 3: if x%d == 0:

i
|
| -
Locals
d2 =
x5 -]
76 Debug Control s S [E=RER

¥ Stack [Source

Gol Stepl O\.rerl Ou‘tl Qui‘tl
¥ Locals | Globals

primes.py:2: [sPrime()

‘bdb'.run(), line 383: exec cmd in globals, locals ;I
'_main_".<module> (), line1: main()
'__main__".main(), line 13: PrintPrimes(100)

' _main__".PrintPrimes(]), line &: if IsPrime(num]:

> '_main__"IsPrime(), line 2: for d in range(2, x):

Locals

d2 El

Then we try 3:

154 CHAPTER 5. TESTING AND DEBUGGING

74 Debug Control s S . E@M

v Stack [Source

Gol Stepl O\.rerl Outl Quitl
¥ Locals [Globals

primes.py:3: IsPrime()

‘bdb'.run(), line 383: exec cmd in globals, locals d
__main__".<module> (), line 1: main()
'_main__".main(), line 13: PrintPrimes{100)
'__main__".PrintPrimes(), line 9: if IsPrime(num]:

> '__main_"IsPrime(), line 3: if x%d == 0:

Locals

d3 [=]
X3 _I
74 Debug Control s S . Elﬁlg

¥ Stack [Source
Gol Stepl O\.rerl 0ut| Quitl

¥ Locals [Globals
primes.py:2: IsPrime()
'bdb".run(), line 383: exec cmd in globals, locals ;I

__main__".<madule> (], line 1: main()
'__main__".main(), line 13: PrintPrimes(100)
'_main__".PrintPrimes(), line & if IsPrime(num]:
> '__main__"IsPrime(), line 2: for d in range(2, x):

Locals

|»

d3

x 3 ;I

We could continue in this way, but we know that 5 is prime and all of these
divisions will fail. Let’s step Out of the call to IsPrime This function completes
its execution and returns True, so we are back in function PrintPrimes:

5.2. THE SHELL DEBUGGER

' main_".<module> (), line1: main()
'_main__".main(), line 13: PrintPrimes(100)
> '_main__".PrintPrimes(), line & for num in range(2 N+1}):

155
-

7% Debug Control —— E@g

¥ Stack [Source
Gol Stepl O\.rerl Outl Quitl

¥ Locals I Globals
primes.py:8: PrintPrimes()
‘bdb'.run(), line 383: exec omd in globals, locals d

Locals

N 100

num 3

-

=

At this point we have seen enough. We click on the Go button to continue the
rest of the program without interruption, and the remaining prime numbers are
printed to the shell. We could run the program again in the debugger by typing

>>> main ()

at the shell prompt. To exit from the debugger, either uncheck Debugger in the
Debug menu or click on the close-box in the upper right corner of the Debug

Control window.

156 CHAPTER 5. TESTING AND DEBUGGING

5.3 Pdb

The Pdb module gives a richer debugging environment than the shell debugger
that we discussed in section 5.2. Again, you select Run Module from the Run
menu of IDLE to load your program into the shell’s memory. Then at the shell
prompt you need two lines:

>>> import pdb
>>> pdb.run("main()")

Don’t forget the parentheses after main; you want to call function main, not just
evaluate it. The system responds with

> <string> (1) <module> () ->None
(Pdb)

At this point you have access to a number of pdb commands. You type these
commands into the shell at the (Pdb) prompt; the system responds in the shell.
Here is a list of the most useful pdb commands; most can be abbreviated to
their first letter:

s(tep) Execute the current line, stepping into function calls. This is like the
Step button in the shell debugger.

n(ext) Execute the current line, stepping over function calls. This is like the
Over button in the shell debugger.

r(eturn) Execute the rest of the current function call, continuing until it re-
turns. This is like the Out button in the shell debugger.

c(ontinue) Continue to execute the rest of the program, not stopping unless a
breakpoint is encountered. This is like the Go button in the shell debugger.

1(ist) List the portion of the source code around the current instruction.
list first, last List the portion of the source code between lines first and last.

p expression The expression is evaluated and its value is printed. Note that
the command is p, not print. The command p (x, y,z) is the usual way
to get the current values of variables x, y and z.

b(reak) function Set a breakpoint at the first line of the named function.
b(reak) n Set a breakpoint at line number n.

b(reak) function, condition Set a conditional breakpoint at the start of the
named function.

b(reak) n, condition Set a conditional breakpoint at line number n.

disable n Disable breakpoint number n (not the breakpoint at line number n).

5.3. PDB 157

enable n Re-enable the disabled breakpoint number n

condition n Removes any condition on breakpoint n
condition n ¢ Sets the condition on breakpoint n to c.
cl(ear) Removes all breakpoints.

cl(ear) n Removes breakpoint number n

Return-key On a Return the system re-runs the last pdb command it executed.
So to step through a program you need to give one s or step command,
followed by a series of <Return> keys.

The only thing really new here is the notion of a breakpoint. If you are executing
more than one line of code with next, return, or continue commands, exe-
cution will always stop when a breakpoint is reached. Listings of the code will
indicate breakpoints with a B. Note that the breakpoints are numbered from 1
as you create them. Some of the commands require you to know the number of
a breakpoint; you can always look back in the shell to find the number that was
given when you created it.

As in section 1.5, we will run the following program through the pdb debug-
ger:

def IsPrime(x):
for d in range(2, x):
if xX%d = 0:
return False
return True

def PrintPrimes(N):
for num in range(2 ,N+1):
if IsPrime(num):
print(num)

def main ():
PrintPrimes (100)

main ()

Program 5.3.1: Finding Prime Numbers
After running the program in the shell, we type

>>> import pdb
>>> pdb.run("main()")

158 CHAPTER 5. TESTING AND DEBUGGING

and the system responds:

> <string> (1) <module> ()
(Pdb)

You need to actually step into the program before doing anything with it. So
we type

(Pdb) step
and the system responds with

--Call-——
> c:\users\bob geitz\...\primes.py(12)main ()
—> def main():

(Pdb)

The program has 15 lines (to see this, put the cursor on the last line of the
program in IDLE; the line number appears at the bottom right of the IDLE
window). To get a listingof it in the shell, so we can avoid bouncing back and
forth between the shell and IDLE, we ask the first 15 lines. We type:

(Pdb) 1list 1, 15

and the system responds:

1 def IsPrime (x):
2 for d in range(2, x):
3 if x%d ==
4 return False
5 return True
6
7 def PrintPrimes (N) :
8 for num in range(2,N+1):
9 if IsPrime (num) :
10 print num
11
12 - def main() :
13 PrintPrimes (100)
14
15 main ()
(Pdb)

Note the arrow at line 12, which indicates the current instruction, in this case
the start of function main. Let’s do a few more steps. We type

(Pdb) s

and the system responds

5.3. PDB 159

> c:\users\bob geitz\...\primes.py(13)main/()
—> PrintPrimes (100)
(Pdb)

We could step again by just pressing the <Return>-key, but the output is easier
to read if we at least use the s of step:

(Pdb) s
The system responds:

--Call-——
> c:\users\bob geitz\...\primes.py(7)PrintPrimes ()
—> def PrintPrimes (N) :

(Pdb)

One more time: we type
(Pdb) s
and the system responds

> c:\users\bob geitz\...\primes.py(8)PrintPrimes ()
—> for num in range(2,N+1):
(Pdb)

To see the current value of N we type
(Pdb) p N

and the system responds
100

If we try to find the value of variable num from PrintPrimes:
(Pdb) p num

we get an error message from the debugger because the for-loop in which num
is defined has not yet started executing.

We could continue stepping through the program, but let’s take advantage of
the fact that pdb has breakpoints. To watch the program determine if the num-
ber 65 is prime, we can set a breakpoint just inside the for-loop in PrintPrimes
when the value of num becomes 65. We type:

(Pdb) break 9, num==65
and the system responds:

Breakpoint 1 at c:\users\bob geitz\...\primes.py:9
(Pdb)

We can run the execution of the program to this point with

160 CHAPTER 5. TESTING AND DEBUGGING

(Pdb) continue

The program runs, printing out prime numbers as it finds them and stops at
the breakpoint when our condition is met:

61

> c:\users\bob geitz\...\primes.py(9)PrintPrimes ()
-> if IsPrime (num) :

(Pdb)

We can see the current values of N and num with
(Pdb) p (N, num)
and the system prints them:

(100, 65)
(Pdb)

We will now step 4 times and watch the action of the code. To the first step
the system responds:

--Call--

> c:\users\bob geitz\...\primes.py(1l)IsPrime ()
—> def IsPrime (x):

(Pdb)

On the next step we go inside IsPrime():

> c:\users\bob geitz\...\primes.py(2)IsPrime ()
—-> for d in range (2, x):
(Pdb)

5.3. PDB 161

Our first value of d is 2, so when we step

> c:\users\bob geitz\...\primes.py(3)IsPrime ()
=> if x%d ==
(Pdb)

the result is False and we go back and increment d.

> c:\users\bob geitz\...\primes.py(2)IsPrime ()
-> for d in range (2, x):
(Pdb)

We know that when d gets to 5 it will divide evenly into x and IsPrime will
return False. To see if this happens, we tell use the Return command, which
tells the system to continue until the current function returns. We type:

(Pdb) return
and the system responds:

——Return—-

> c:\users\bob geitz\...\primes.py(4)IsPrime ()->False
-> return False

(Pdb)

The first line of this says it is executing a Return command. The next line
says that the current function, IsPrime, returns False. The third line is the next
instruction to execute, the actual return instruction from line 4 of the code. If
we step again we are back in function PrintPrimes:

> c:\users\bob geitz\...\primes.py(8)PrintPrimes ()
—-> for num in range(2,N+1):
(Pdb)

We now finish the exeuction of the program with a Continue statement. We
type:

(Pdb) continue

and the system responds with the remaining prime numbers less than 100, and
stops the program execution:

67
71
73
79
83
89
97
>>>

162 CHAPTER 5. TESTING AND DEBUGGING

Note that the final prompt we get from the system is the usual shell prompt,
not the (Pdb) prompt.

Using Pdb we can quickly get to any portion of a long program. With some
patience, stepping through instructions and examining the values of variables,
you can use this tool to find some very subtle errors in your code. This only
works if you know exactly what your code is supposed to be doing; you must
compare actual values to your expectations for those values. Debuggers are no
substitute for good programming practices, but in some cases they can very
helpful in the development of long programs.

Chapter 6

Data Structures

Up to this point we have restricted our data to simple values: numbers and
strings. In the real world data is far more complex than this. Consider a
program that represents people. The program might need to keep track of
physical characteristics, like height and hair color. Or it might need to track
personal data, like name, age and social security number. Or it might need
student id-numbers and transcripts (which are themselves lists of courses and
grades). Most programs that deal with objects in the world store multiple
items of simple data for each object. Data structures are program constructs
that hold multiple items of related data, where each item can be of any type.
Python has a rich, easy-to-use set of data structures that will enable you to
write sophisticated programs with relatively little effort. In this chapter we will
look at three important data structures in Python: lists, tuples and dictionaries.

163

164 CHAPTER 6. DATA STRUCTURES

6.1 Concepts

Data structures allow us to package together multiple items of simple data. For
example, we might have a list of numbers: [2, 3, 5], or a list with a name, age
and serial number triple: ["Bob”, 59, "123—45—6789"], or even a list of lists:
[[1. 2], [3, 4 5], [6]]. You can think of the concept of a list as a template
for any sequence of data, of any type whatsoever. All of the structures we will
look at in this chapter are templates for assembling simpler data into packages
so that one element of the structure might be composed of many individual
data items. These structures differ in the mechanisms for how they are created,
how data is inserted into them, and how that data can be accessed. Your job
as a programmer is to choose the data structure that fits the situation you are
coding in the most natural way possible.

There are several concepts that are common to all three of the structures
we will look at. One of these concepts is the notion of indexing the structure.
This is the mechanism through which data can be retrieved from a structure.
We have seen indexing before, with strings: if s is a string, then s[i] is the ith
letter making up s. All three of our new structures are indexed in the same
way, using square brackets and index values: s[i] is the value in the structure
associated with index i. What differs from structure to structure is the kind of
index the structure allows: some use numeric indexes and some use other kinds
of data for indexes.

Another important concept in Python concerns whether a structure is mu-
table or immutable. Once immutable structures are created, the values in them
cannot be changed. For example, strings are immutable. Suppose we create a
string and store it in variable x with the statement

x = "Hi, Mom"

Then x[1] refers to the second element of this string, the letter >i’, but we are
not allowed to write x[1] = 'o’; an error will result. We could write

x =x + "I
to extend the string, but this creates a new string "Hi, Mom!" and stores that
in x; the old string was not modified.

Lists, on the other hand, are mutable structures. Suppose we start with the
list L = [1, 3, 5]. Then L[1] is the value 3. This time we are allowed to modify
the contents of the list:

L[1] =6
changes the list to [1, 6, 5]. Lists come with an append() method that inserts
a value onto the end of the list. If L is this list [1, 6, 5] then

L.append(3)

turns L into [1, 6, 5, 3]. There is no append operation for our immutable
strings. The closest thing to append for strings is the concatenation operator
+, which creates a new list from the content of two old lists.

6.1. CONCEPTS 165

One place where this matters is passing a structure to a function. Suppose
we want a function StringAppend(string, tail) that concatenates the tail on to
the string. We would need to write this:

def StringAppend(string , tail):
return string + tail

and call it in the following way:
s = StringAppend (" bob”, "by")
On the other hand, we could write a list function

def AddToEnd(list, x):
list .append(x)

We might call this as follows:

L=1]1, 3]
AddToEnd(L,5)
This changes L to the list [1, 3, 5]. There is no way for a function to modify

a string because strings are immutable, but a function can modify the contents
of a list — lists are mutable.

166 CHAPTER 6. DATA STRUCTURES

6.2 Lists

Lists are the most important type of structured data. They are used in every
branch of programming. Lists appear in one form or another in almost all
programming laguages. Python in particular makes much use of lists. Python
also has some very useful tools for working with lists, which makes this the
natural data structure to use in many situations.

Lists and strings share many common features. As with strings, we can
use numeric indexes to retrieve the individual elements of a list. Consider, for
example, the list

L= ["first”, "second”, "third"]

Then L[0] is the initial element of L, the string " first ", while L[2] is the string
" third"”. We can use the + operator to concatenate two lists, and the % operator

to multiply a list times an integer. As with strings, we can ask if object x is in
L:

if x in L:

and we can find its index with L.index(x).

There is one significant difference between lists and strings: lists are mutable
structures and strings are immutable. This means that we can change the
contents of a list after it is created; this is not true of strings. Lists have an
append() method that adds its argument onto the end of the list. For example,
we might say:

L =[]

L.append("John")
L.append(" George”)
L.append("Paul”)
L.append("Ringo”)

This turns L into the list ["John", " George”, "Paul”, "Ringo"].

Similarly, we can have a function modify the contents of a list. Think care-
fully about the next example. We know that the following program with integer
variables won’t work:

def Change(x):
x = 24

def main ():
num = 4
Change (num)
print (num)

This prints 4; in spite of the function name, variable num isn’t changed by the
call Change(num).

Contrast this with the following program, which is similar but uses a list
instead of an integer argument for the function call:

6.2. LISTS 167

def Changelist(L):
L.append(24)

def main ():
L = [4]
Changelist(L)
print (L)
main ()

This time the change function, here called ChangeList(), does modify some-
thing. If we run this program it prints the list [4, 24]. The difference is that
function Changelist() changes the contents of list L, it doesn’t change the list
value, which is the address in memory where the list is stored. This value is
what is sent to the Changelist() function. At every point while this program
is running the list variables L, both the L in main() and the L in ChangeList(),
all contain the locations of the same list.

Here is a third related example. At first glance it looks as though this
program will print [24] as the value of L, but this is not correct.

def ChangelistBadly(L):
L=11]
L.append(24)

def main():
L = [4]
ChangelistBadly(L)
print (L)

main ()

Remember that each function’s variables are visible only to that function. The
variable L in function ChangelListBadly() and the variable L in main() are two
completely different variables that happen to have the same name. When we
call ChangeListBadly(L) these variables initially have the same value (i.e., they
refer to the same memory location where a list is stored), but as soon as function
ChangeListBadly() says

L=1]

this is no longer the case. This assignment statement attaches to variable
L in ChangelistBadly() a completely different list from that in variable L of
main(). After this, the append statement appends onto this new list rather
than list L of main(). This program ends up printing [4 |, and the call to
ChangelListBadly(L) has no effect. When a list is passed to a function, it is
seldom useful to have the function re-assign to the list variable; that destroys
the connection between the list argument to the function and lists that occur
anywhere else in the program.
Here are some of the common operations with lists:

168 CHAPTER 6. DATA STRUCTURES

A. Making lists:

L =[] (the empty list, which is the list with no elements)

L = [Pabc”, 7de”, "fghij”, 1, [2, 3] |: this list has 5 elements:
three strings, one integer and one list.

L = L1 + L2, wherelLl andL.2 are lists. This concatenatesl.1 andL2
into a new listL.

L = L1 * 3, wherel.l is a list. This makes a new listL, which is the
concatenation ofLL1 3 times, as inLL1 + L1 + L1.

B. Indexing:
L[0]: the first element in listL
L[1]: the second element in listL
L[2:5]: a slice of listL, which is a new list consisting of the elements
at positions 2, 3, and 4 (but not 5) ofL.

C. Changing the contents of the list, without changing the list itself:

L[i] = a changes the value of theith entry ofL toa

L.append(x): addsx to the end of the listL

L.extend(L1): whereLl is a list. This adds all the entries ofLL1 ontoL

L.sort(): sorts, or arranges in order, the entries ofL

L.sort(compare): again, this sorts the entries ofL, usingcompare
as a function to compare two entries.compare(a, b) should return
-lifajb,0ifa ==Db,and 1 ifa; b

L.reverse(): reverses the order of the entries of L

del L[i]: deletes theith element ofL

L[i:j] = [] deletes the indexi throughj slice ofL

D. Other methods
len(L): the length, or number of entries, ofL

for x in L: iterates a loop over all entries ofLL

x in L: returnsTrue ifl, has an entry whose value isx

L.index(v): returns the index of the first entry ofLl that equalsv;
generates an exception (i.e. crashes) ifl. does not containv

Here is an example that illustrates the power and ease of use of Python’s
list structures. We will write a that allows the user to enter a list of names,
edit it, put it in alphabetical order, and then print it out. Each of these steps
can be handled by its own function since the list contents can be modified by a
function.

The main() function for this program is quite easy. For the first version
we will dispense with editing and just read and print the list. For this version
main() is just:

6.2. LISTS 169

def main():
L=]
ReadNames (L)
PrintNames(L)

Function ReadNames() is our usual input loop for strings; each time we get
a non-blank string we append it onto the list:

def ReadNames(L):
done = False
while not done:
name=raw_input (" Enter a name, or a blank to quit: ")
if name = "":
done = True
else:
L.append(name)

A simple for-loop is all that is needed to print the list:

def PrintNames(L):

print "Here is the list:
for name in L:
print (name)

”

Putting main(), ReadNames() and PrintNames() together yields the first
version of our program. If we add one more line to main() we can get the
names to print in alphabetical order:

170 CHAPTER 6. DATA STRUCTURES

def ReadNames(L):
done = False
print (" Enter names, and a blank to quit.")
while not done:

name=input(” Enter a name: ")
if name = "":

done = True
else:

L.append(name)

def PrintNames(L):

print (" Here is the list: ")
for name in L:
print (name)

def main():
L=]
ReadNames (L)
L.sort()
PrintNames (L)

Program 6.2.1: Reading and printing names, first version

Here is a typical user interaction with this program; note that the output is
alphabetized:

Enter names, and a blank to quit.
Enter a name: john
Enter a name: paul
Enter a name: george
Enter a name: ringo
Enter a name:

Here is the list:
george

john

paul

ringo

Editing the list is a little more interesting. While more elaborate edits are
possible, we will keep this simple by just allowing the user to delete names.
A for-loop can run through the list and ask the user if each name should be
deleted. However, modifying a list while it is being used to sequence a for-loop
is a very bad idea that can lead to mysterious bugs that are hard to detect.
Rather than this, we will build up a ”delete list” of names to be removed, then

6.2. LISTS 171

in a second loop perform the deletions. Python makes it easy to create and
process lists, so this is a common solution to programming problems in Python.

To delete an individual name from a list we need to know the index of this
item in the list. Lists have an index() method that returns the position of any
item in the list. It is important to insure that the argument to this method is
actually an element of the list; your program will crash if you ask for the index
of something that isn’t in the list. Fortunately, we will only ask for the index of
names in the delete list, which all come from the original list. Here is all that
is needed to delete the entry stored in variable name from list L:

i = L.index(name)
del L[i]

Putting these ideas together, here is the DeleteNames() function:

def DeleteNames(L):
print "Which of these should be deleted?”
deletelList = []
for name in L:
print (name)
print (" Delete?")
response=input (" Enter 'y
if response = 'y ':
deletelist .append(name)
for name in deletelist:
i = L.index(name)
del L[i]

to delete: ")

Here is the complete code for the final version of our program:

172

CHAPTER 6. DATA STRUCTURES

This programs allows the user to read,
a list is names, edit that list, alphabetize it,
and then print it.
def ReadNames(L):
This reads names and stores them in a list
done = False
print (" Enter names, and a blank to quit.")
while not done:
name=input (" Enter a name: ")
if name = "":
done = True
else:
L.append(name)
def DeleteNames(L):
This runs through L and asks if each
entry should be deleted.
print (" Which of these should be deleted?")
deletelist = []
for name in L:
print (name)
print (" Delete?")
response=input (" Enter 'y' to delete: ")
if response = 'y :
deletelist.append(name)
for name in deletelist:
i = L.index(name)
del L[i]
def PrintNames(L):
This prints all the entries of L
print " Here is the list: "
for name in L:
print (name)
def main():
L=]
ReadNames (L)
DeleteNames (L)
PrintNames (L)
main ()

Program 6.2.1: Reading and printing names, final version

6.3. DICTIONARIES 173

6.3 Dictionaries

Lists hold sequences of data of any type. Sometimes we want to do more than
that. In many situations it is useful to associate related values. For example,
a gradebook associates individual students with lists of grades. A concordance
associates a word with places where it occurs. An inventory associates items
with counts of how many there are. An associative data structure and operations
to manipulate it are built into Python. This structure is called a dictionary and
it is very useful.

Because lists are sequential, we can use numeric indexes to refer to the
individual elements of a list. L[0] is the first element of listL, L[1] is the second
element, and so forth. A list with 5 elements always uses the indexes 0, 1, 2,
3, 4. Dictionaries use a similar notation, with slightly different terminology.
We say that a dictionary associates values with keys. The keys play the role of
the indexes of a list, only the keys do not need to be numeric. For example,
if "bob” is a key of dictionary D, then D['bob"] is the value associated with
"bob”. We can create this association by assigning a value to D["bob"], such
as D["bob"]= 57 or D["bob"]=[1, 2, 3]. We retrieve the value associated with
"bob” by referring to D["bob"], as in print(D["bob"]).

Dictionaries can have any immutable type for their keys. The immutability
requirement comes from the way dictionaries are implemented internally. In
practice, this requirement means that dictionaries cannot have lists as their
keys. There are situations where it would be nice to have lists as keys. For
example, we might want to represent a date by the list[month, day, year] (such
as [9, 30, 2009]) and use such dates as keys for a dictionary. For these situations
there is an immutable type similar to lists called tuples. We will discuss tuples
in the next section. Strings, integers, and tuples are the most common keys for
dictionaries.

The empty dictionary is denoted by the symbol {}. Although there are
mechanisms to construct a dictionary from lists, we usually start with the empty
dictionary and add items to it one at a time. Since dictionaries aren’t sequential,
we need to do a little work to print the information from one. Here is an easy
way to do this. If D is a dictionary, then D.keys() is a list of all of the keys of
D. Since it is a list, we can process this with a for-loop, and then use D[key] to
access the value associated with each key.

For example, if the values associated with each key are printable, we might
use the following function to print the dictionary:

def PrintDictionary(D):
for key in D.keys():
print (D[key])

As with lists, dictionaries are mutable structures, so we can pass them as
arguments to functions that modify the contents of the dictionary. Perhaps the
biggest issue with dictionaries is the need to check that a key exists before we
try to find the value associated with it. This doesn’t occur with lists; if a list
has 4 entries we know they are indexed with 0, 1, 2, and 3. A dictionary could

174 CHAPTER 6. DATA STRUCTURES

have almost anything as its keys, so knowing the size of the dictionary tells us
nothing about its keys. Suppose, for example, that we have a program that
reads words and records how many times each of them occurs. We store this
information in a dictionary Counts, where the words are the keys and numbers
of instances of the words are the values. When we read a word, we don’t a
priori know if it is one of the keys or not. We could write

Counts[word] =1

but if word has been seen before this will destroy any prior information about
the number of times it has already occurred. We could write

Counts[word] = Counts[word] + 1

but this won’t work if word has not been seen before, as there won’t be a value
for the right-hand side of the assignment. The right way to address this is to
use a conditional statement:

if word in Counts.keys():

Counts[word] = Counts[word] + 1
else:

Counts[word] =1

It is an error to index a dictionary with a something that is not currently a key
of the dictionary; if you do this, your program will crash.

Example. We will now develop a simple inventory program that tracks items
and counts. This program stores its information in a dictionary with strings
(the item names) for the keys of a dictionary and numbers (the counts) for the
values. This repeatedly asks the user for an item and a count. The first time
we see an item we create a record for it. If the item comes up again, we add its
count onto the existing count for that item. For example, we might have the
following interaction with this program:

Enter an item or a blank to exit: hammer
Enter a count: 10
Enter an item or a blank to exit: screwdriver
Enter a count: 24
Enter an item or a blank to exit: saw
Enter a count: 5
Enter an item or a blank to exit: hammer
Enter a count: 15
Enter an item or a blank to exit: saw
Enter a count: 3
Enter an item or a blank to exit:
Here is the current inventory:

hammer: 25

saw: 8

screwdriver: 24

6.3. DICTIONARIES 175

Each iteration of the input gives us valuesa for item and count. This infor-
mation is added to the dictionary in one of two ways. If the item is not already
a key in the dictionary, it is added with

D[item] = count
On the other hand, if item is a key, then we increase its value by count:
D[item] = D[item] + count

This is very similar to the code above where we counted words; before updating
the dictionary we check to see if the new index is already one of the dictionary’s
keys, and take appropriate action based on the answer to this question. We
need such code in almost every program that makes use of dictionaries.

Here is the complete program:

176 CHAPTER 6. DATA STRUCTURES

This keeps track of an inventory of items
and counts.

def AddToDictionary(D, s, n):
This adds todictionary D the information that n units
of item s were found.
if s in D.keys():
D[s] =D[s] + n
else:
D[s] = n

def PrintDictionary(D):
This prints the keys and values of the dictionary
with the keys in alphabetical order

names = D. keys ()

names.sort ()

for item in names:
print ("%s: %d" %(item, D[item]))

def main():
inventory = {}
done = False
while not done:
item = input (" Enter an item or a blank to exit: ")
if item = "":
done = True
print ()
else:
count = eval(input(” Enter a count: "))

AddToDictionary(inventory, item, count)
PrintDictionary(inventory)

main ()

Program 6.3.1: Inventory Program

6.4. TUPLES 177

6.4 Tuples

Old programming languages such as C have strict rules for the programmer
for the ways in which data must be handled. The burden of showing that
a program is consistent in its data usage is put on the programmer. As a
result, programs in these languages can run very efficiently; little needs to be
checked during the execution of a program. Python reverses this. It places little
burden on the programmer, and this means that things that are verified in other
languages when the program is written need to be checked during run-time on
Python programs. For the most part this is a good trade-off; it enables Python
programs to be written by many people who are not professional programmers,
and processors have become so fast that we seldom notice the increased time
for the execution. Occasionally, however, this tradeoff does not work well for
us; we would like to get faster execution, even at the cost of more elaboration
at programming time. One way to achieve this is to use data structures with
less flexibility.

We have seen that the list data type in Python is useful in many situations
because of its mutability. We can create an empty list and gradually add mem-
bers to it as we have a need to do so. We can insert members, delete members
and alter members of a list whenever we need to. This gives great power to the
programmer, but it also requires that every list be created with the ability to
expand without limits. Python has a similar data type called a tuple that has
many of the same properties as lists, but tuples are immutable. Once a tuple
is created, its contents cannot be altered. Tuples place fewer demands on the
system, so programs that use them might run faster than similar programs that
use lists. More important for our purposes, there are things that Python will let
you do with tuples that you cannot do with lists. Among the most important
of these is serving as keys for dictionaries. Tuples can be keys, lists cannot.

Tuples are written as comma-separated sequences of values inside paren-
theses, as in (3, 4, 5). The parentheses can be eliminated if you choose: the
expression 2, 3 is interpreted by Python as the tuple whose first element is 2
and whose second is 3; this is more commonly written (2, 3). If you need a
tuple with only one element 2, it is written (2,). Tuples are made differently
than lists: we often start with an empty list and build it up one element at a
time, but since tuples are immutable we have to start tuples with their complete
values.

Tuples are indexed the same way as lists and dictionaries, with square brack-
ets. If T is a tuple, then T[0] is its first element, T[1] is the second element, and
so forth.

One thing that you can do in Python that is not allowed in older languages is
assigning to a structure in which the entries are variables. For example, Python
allows the statement

(x, y) = (3, 5)

and the effect of this statement is to assign 3 to x and 5 to y. This works with
both the tuple (x, y) and the list [x, y], but since we would be unlikely to alter

178 CHAPTER 6. DATA STRUCTURES

a structure containing several variables, tuples are the more natural structure
to use for such an assignment.

The following program illustrates the way we could use this to have a function
return multiple values. Here function MinMax() takes as an argument a list of
numeric values and returns a tuple containing the smallest and largest values
in the list. Note that in main() we can assign a tuple of variables to the value
returned by a call to MinMax()

This finds the largest and smallest values of a list.
def MinMax(L):

This returns the largest and smallest values of list L,

We assume that all the values in L are between 0

and 100.
min = 101
max = —1

for x in L:
if x < min:

min = x
if x > max:
max = x

return (min, max)
def main ():

L=1[2, 9,1, 3,5, 4, 2, 7, 5]
(m, M) = MinMax(L)
print("The smallest of those values is %d” % m)
print("The largest of those values is %d” % M)

main()

Program 6.4.1: Largest and smallest values of a list

In the next program we store and edit a list of names, where names are
represented by (givenNames, familyName) tuples. Since we do not plan to edit
the names after they are created, tuples are the natural structure here. Since
tuples, like strings, are immutable, we could use such a structure any place
where we use strings, such as for the keys of a dictionary.

Our program needs to take a number of possibilities into account. Some
people have only one name, as in "Madonna” or ”Prince”. We will ultimately
sort the names by the family name field, so we will put this single name as the
family name, which is the second entry in the tuple, and for these use an empty
string in the given name field. Some people have more than one given name, as
in ”Barack Hussein Obama” or ”Charles Philip Arthur George Windsor”. We

6.4. TUPLES 179

will assume that the last of the words in such a string is the family name and
put everything else into one long given name.

180 CHAPTER 6. DATA STRUCTURES

This reads a list of names and sorts it.
The names are stored as (givenName, familyName)
def ReadName():

response = input("Enter a name: ")
names = response.split()
if len(names) = 0:
return ("", "")
else:
lastName = names[len(names) — 1]
if len(names) = 1:
firstName = ""
else:
firstName = names[0]

return (firstName , lastName)

def PrintList(L):
This prints list L
for entry in L:
print("%s %s” % (entry[0], entry[1l]))

def compare(namel, name2):

This returns —1 if namel < nameZ2,

0 if namel — name2,

and 1 if namel > name2

if namel[l] < name2[1]:
return —1

elif namel[l] > name2[1]:
return 1

elif namel[0] < name2[0]:
return -1

elif namel[0] > name2[0]:
return 1

else:
return 0

def main():
PersonList = []
done = False
while not done:
p = ReadName()
if p[l] = "":
done = True
else:
PersonList.append(p)
Personlist.sort (compare) # Note this use of compare
PrintList(PersonList)

main ()

Program 6.4.2: Sorting (givenName, familyName) tuples

6.5. SETS 181

6.5 Sets

A set is a data structure that holds single copies of a number of elements. The
most important property of a set is that it has no repeats: if an item is in
the set and we try to add it again, the set is unchanged. Note that adding
an element to the set that is already present in the set is not an error, it just
doesn’t change the change the set. You have encountered sets in mathematics
classes where they seem fairly obvious and not very interesting, just an excuse
for more terminology. They play a more interesting role in programming. Sets
have some useful operations. For example, if wordl and word2 are two words,
then set(wordl)—set(word2) is the set of letters that are in wordl but not in
word2, while set(word1)&set(word2) is the set of letters in both. Sets are also
efficient ways to store data for lookups. If a set s has n elements, you can
determine if an item is in s or not in time proportional to log(n). For a list this
operation takes time proportional to n. The difference doesn’t matter when n is
small, but if n is large it might take 20 steps to find if something is in a set and
one million steps to find if the item is in a list with the same elements as the
set. That is enough of a difference to show up in the user experience of running
your program.

We create an empty string with quotes, an empty list with square brackets,
an empty tuple with parentheses, and an empty dictionary with curly brackets.
We are out of delimiters. To make an empty set, we use the function set().
There are actually similar constructors for making the other structures: list (),
tuple() and dict() make empty lists, tuples and dictionaries, respectively. If
we have elements to put in the set at the time it is created we can write it
with curly brackets, as in {1, 2, 3}. Note that the elements of a set must be
hashable. It is hard to describe what constitutes being hashable without going
into the details of how sets are implemented, but numbers and the immutable
structures (strings and tuples) are all hashable. Sets themselves are mutable.

Here are some of the common operations with sets:

182 CHAPTER 6. DATA STRUCTURES

A. Making sets:
S = set() (the empty set, which is the set with no elements)
S = {3, 6,9} makes S be a set consisting of the numbers 3, 6, and 9.
S = set(L), where L is a list, string, or tuple: makes S be a set whose
elements are the elements of L
S = set("abc”) is the same as S = {7a”, ”b”, "¢”}
S.copy() returns a new set that is a copy of set S

B. Operations:
A+B is the union of sets A and B. This can also be written A.union(B)
A&B is the intersection of sets A and B.
This can also be written A.intersect(B)
A-B is the difference of sets A and B: the elements of A that are not in B.
This can also be written A.difference(B)
A<=B is True if A is a subset of B: all of the elements of A are also in B
A<B is True if A is a proper subset of B:
A is a subset of B and not equal to B

C. Changing the contents of a set:
S.add(x) adds element x to set S if x is not already an element of S
S.remove(x) deletes element x from set S;
this causes an error if x is not an element of S
S.discard(x) deletes element x from set S
but does not cause an error if x is not an element of S
S.clear() removes all elements of set S

D. Other methods
len(S): the length, or number of entries, of set S

for x in S: iterates a loop over all entries of set S
x in S: returnsTrue ifx is an element of set S
x not in S: returnsFalse ifx is an element of set S

We will now look at two examples of sets. The first example is a short
program that builds up a set of the user’s favorite colors. We make an empty
set called favorites with the line

favorites=set ()

and then go into our usual input loop that reads strings as variable color until
we get to an empty string. We exit the loop on an empty string; when variable
color is not empty we add it to the set with

favorites.add(color)
At the end we print the contents of the set with

for x in favorites:
print (x)

6.5. SETS 183

Here is the complete program:

def main():
This builds up and then prints a set of
favorite colors
done = False
favorites = set ()
while not done:
color = input(" Favorite colors? ")
if color = "":
done = True
else:
favorites.add(color)

for x in favorites:
print (x)

main ()

Program 6.5.1: Creating and printing a set of favorite colors

Our second example of sets is more elaborate. Here is a statement of the
problem:

Write a program that inputs a single string from the user. The
program should print every possible rearrangement of the letters
of that string, with each rearrangement printed only once.

One way we will use sets in this program is for finding unique rearrangements.
Each time we generate a rearrangement we’ll add it to a set; this way duplicates
will be ignored. At the end we’ll just print the elements of this set. A more
interesting use of sets occurs in creating the rearrangements. We will find all
of the rearrangements by first finding all of the possible permutations of the
numbers (0, 1, 2, ... n-1), where n is the length of our string, and using these
permuations to make the rearrangements.

An example will help clarify this algorithm. Suppose the string we start with
is 7abc”; we'll call this string word. We start by finding the set of all permu-
tations of the numbers (0, 1, 2): {(0,1,2),(0,2,1),(1,2,0),(1,0,2),(2,0,1),(2,1,0)}
Each of these makes one rearrangement of word. For example, with permutation
(1,2,0) our rearrangement is word[1]+word[2]+word[0], which is "bca”. Here
is code for a function that takes variable word and rearranges it according to
permutation t:

def reArrange(word, t):
newWord = ""

184 CHAPTER 6. DATA STRUCTURES

for i in t:
newWord = newWord + word[i]
return newWord

So far we have reduced our problem to the problem of finding all permuta-
tions of the numbers (0,1,2,..., n—1). There are a number of ways to do this.
An easy, though not particularly efficient way makes another use of sets. We
will maintain a set of all of the permutations we have found so far; initially
this contains only the single tuple (0,1,2,..., n—1). At each step we take one
of the permutations from this set and run through all of the possible indexes i
and j of this permutation. We interchange the elements at index i and index j,
forming a new permutation, which we add to our set. This keeps going until we
have found all of the permutations. How many are there? There are n numbers
in (0,1,2,..., n—1), so there are n choices for the first entry. The one chosen
can’t be reused, so there are n—1 choices for the second entry, n—2 choices
for the third entry, and so forth. Altogether there are n¥(n—1)%(n—2)x*...x1, or

factorial (n) possible permutations.

This algorithm makes the following code:

permutations = set() #makes an empty set
permutations.add(start) #start is the initial tuple (0,1,2,...N-1)
while len(permutations) < maxSize: #maxSize is factorial(N)
for t in permutations:
for i in range(0, N—1):
for j in range(i+1, N):
newT = switch(t, i, j) #switches i and j elements
permutations.add(newT)

There is one problem with this code. We have a for-loop: for t in permutations:
and in the body of this loop we modify the permutations set. Python doesn’t al-
low this. To fix this we change the loop to use a copy of the current permutations
set, and we add newT to the actual permutations set:

permutations = set() #makes an empty set
permutations.add(start) #start is the initial tuple (0,1,2,...N-1)
while len(permutations) < maxSize: #maxSize is factorial(N)
for t in permutations.copy():
for i in range(0, N—1):
for j in range(i+1, N):
newT = switch(t, i, j) #switches i and j elements
permutations.add(newT)

Now, suppose the size of our string is N=4. Factorial(4) is 24; suppose
we have found 23 of the 24 permutations. If we loop through every one of
these permutations and every possible pair of indices i and j, we might find
the only remaining permutation quickly and then be stuck doing a lot of extra,
unnecessary work. We can avoid this by placing a break statement inside the
for-loop on t:

6.5. SETS 185

if len(permutations) = maxSize:
break
Our code so far calls a function switch(t, i, j) to interchange two elements

of tuple t. Here is the algorithm for this. We have chosen indices i and j in
such a way that we know i<j. So we first copy the elements of t with indices
less than i, followed by the entry at index j, followed by the elements of t with
indices from i+1 to j—1, followed by the entry at index i, and that followed by
the portion of t with indices greater than j:

def switch(t, i, j):

newT = t[OT:i]+(t[j],)+t[i+1:j]+(t[i],)+t[j+1:]
return new

The following program puts all of this together:

186 CHAPTER 6. DATA STRUCTURES

This program inputs a word and prints all of the possible
anagrams of that word.

def factorial(n):
This returns the product of the numbers from 1 to n
prod =1
for x in range(2, n+1):
prod = prodx*x
return prod

def switch(t, i, j):
This assumes t is a tuple and
i and j are indexes into t, with i<j
This returns the result of interchanging
t[i] and t[j]
newT = t[0:i]+(t[j],)+t[i+1:j]+(t[i],)+t[]j+1:]
return newT

def reArrange(word, t):
This arranges the letters of word according to the
order specified by permutation t.
newWord = ""
for i in t:
newWord = newWord + word[i]
return newWord

def main():
word = input("word? ")
N = len(word)
maxSize = factorial (N)

start = tuple(range(N)) #(0,1,,2,... ,N-1)
First we find all of the permutations of start
permutations = set ()
permutations.add(start)
while len(permutations) < maxSize:
for t in permutations.copy():
if len(permutations) = maxSize:
break
for i in range(0, N-1):
for j in range(i+1, N):
newT = switch(t, i, j)
permutations.add(newT)
Next we make a set of the anagrams of word
anagrams = set ()
for t in permutations:
anagrams.add(reArrange(word, t))
Finally we print that set.
for w in anagrams:
print (w)

main ()

Program 6.5.2: Anagrams of a word

6.5. SETS 187

If we run this with word="read” we get the 24 permutations of those 4 letters:

dear, dare, aedr, ared, erad, eard, aerd, reda,
eadr, ader, daer, drae, adre, raed, drea, erda,
dera, arde, edra, rdea, read, rdae, edar, rade

However, if we run it with word="bob" we only get 3 since other permutations

would result in duplicates:

obb, bob, bbo

188

CHAPTER 6. DATA STRUCTURES

6.6 Exercises

Write a complete Python program to solve each of the following problems.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

Write a program that reads a list of numbers from the user; the list ter-
minates when the user enters 0. After all of theinput the program should
print the list.

Change the program from problem 6.1 so the list is printed in reverse
order.

Change the program from problem 6.1 to use a tuple instead of a list.

Change the program from problem 6.1 to print the average value of the
list as well as each of the values in the list.

Write an inventory program for a store, similar to program 6.3.1. This
should let the user enter objects and the number of each in the inventory.
The input terminates when the user gives the empty string as an object
name. After this the program prints the entire inventory, alphabetized by
the names of the objects. For example, the input might be

Object: widget
Number of widgets: 24

Object: thingamabob
Number of thingamabobs: 3

Object: gizmo
Number of gizmos: 15

Object:

The output will then be:

gizmos: 15
thingamabobs: 3
widgets: 24

Make the user interaction as natural as you can. Note the use of singular
and plural objects in this example.

Change the program from problem 7?7 so that the output is in order from
smallest number to largest number. For the example given it will be

thingamabobs: 3
gizmos: 15
widgets: 24

6.6. EXERCISES 189

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

Write a program that inputs a list of values (it doesn’t matter if they are
numbers or strings) and then prints all of the values that appear in the
list more than once.

Write a program that inputs a list of numbers and outputs basic statistical
information about the list: minimum and maximum values, average value,
standard deviation (the square root of variance; you can find this in any
book on statistics), and median (middle value).

Write a program that stores in a dictionary a list of people’s birthdays.
To make the input simple, read in the three fields of the birthday (month,
day, year) on separate lines. Your input might look like this:

Enter name: bob
Enter month: 2
Enter day: 16
Enter year: 1952
Enter name:

It this could keep up until you get a blank name.With each name you
should enter the name and date in a dictionary, with the name as the
key, and a tuple for the date as a value. After all of the input, have your
program print all of the birthdays in the dictionary.

Add a LookupName feature to the program from 6.9. This should ask the
user for a name, and then print the birthday for that person. Make sure
your program doesn’t crash if you give it the name of someone who isn’t
in the dictionary.

Add a LookupBirthday feature to the program from 6.9. This should ask
for a birthday, and then print all of the people who had that birthday.

Try rewriting the program from problem 6.9 so that the keys of the dic-
tionary are the dates (use a tuple (m, d, y) for this) and the values are
lists of all people with that date as their birthday.

190 CHAPTER 6. DATA STRUCTURES

Chapter 7

Files

Files provide permanent storage of data. Any program that retains data from
one execution of the program to another stores that data in files, whether the
user can see those files or not. For example, any program that has a ”prefer-
ences” tab that allows you to change some features of the program must store
those preferences in a file. In this chapter we will look at ways to incorporate
files into our programs, using files both for input (reading data from a file) and
output (storing data in a file).

191

192 CHAPTER 7. FILES

7.1 Concepts

There are two basic types of files: text files, which consist of a sequence of
characters, and binary files, which contain binary encodings of information.
Microsoft Word, and many other commercial programs that format information,
create binary files because data can usually be packed much more efficiently into
binary files than into text files. A Python program can open up binary files,
but in order to obtain useful information from a binary file you need to know
the way it is encoded; this information may or may not be available to you. In
this chapter we will only look at text files. You can create a text file with the
Python editor. Most word processing programs, such as Microsoft Word, also
enable you to save files in text format.

Since files exist apart from your programs, an extra step is needed to make a
file available to your program. This is called opening the file. You must always
open a file before using it. This provides a link between the physical file and
your program. When you open a file, you must say how you are going to use it:
whether you want to read data out of it or write data into it. You may want to
do both, but only one of these can be done at any given time.

The open function is

open(< file name>, <mode>)

where both the <file name> and <mode> are strings. This returns a file object
that you need to reference each time you use the file, so you should save it in a
variable, as in

F = open(<file name>, <mode>)

In this open statement the mode can be one of three strings:

9 77

e "7 means you want to open an existing file to read information from it.
Your program will crash if the file is not found.

e 7w’ means you want to create a new file so you can write information into
it. Any previous file with this file name will be destroyed.

Y al?

e 7a” means you want to append information at the end of a new or existing
file.

For example, we could open for reading a file whose name is ”data.txt” with
the statement

F = open(”data.txt”, "r")

Note that to open a file you need to know the full name, including any file
extension such as ”.txt” Many modern software packages hide the file extension;
you need to know it in order to write a program that opens a file with this
extenstion. If you create a text file to use in a Python program, use a standard,
explicit file extension, such as ”.txt”.

It is possible to specify a full path to a file, such as

7.1. CONCEPTS 193

F=open("C:\ Documents and Settings\Bob\My Documents\data.

If the file is in the same folder as the Python program that uses it, you only
need to give the file name rather than its full path. For example, we might use

F=open (" data.txt” ,"r")

if the "data.txt” file is in the same folder as the program. We will later see a
graphical way to obtain the path to a file; for now we will just work with files
in the same folder as our programs.

With other data structures there are simple ways to move around in the
structures. We call these "random access” structures because we can move
directly to arbitrary positions in the structure. With files random access is much
more difficult. We generally read files from beginning to end. When writing files
we also write from beginning to end, rather than inserting characters into the
middle of a file. This makes some file manipulations awkward. It is usually
easier to work with lists and other structures internal to Python than with files.
A simple paradigm for handling files is:

e Read the data from your file into a list or other structure at the start of
your program.

e Manipulate the list or other structures.

e At the end of the program write the data from your structures back into
the file.

txt” 'H rH)

194 CHAPTER 7. FILES

7.2 Writing Files

To open a file for writing you must use either

F = open(<file name>, "w")

or
F = open(<file name>, "a")

The value returned by the open() statement is a file object; we need this
object in order to manipulate the file. The "w" mode causes a new file to be
created. If a file with this name already exists in the current folder, it will be
destroyed and replaced by the new file. The "a” mode will append onto the end
of an existing file, or create a new one if no file with the given name already
exists. In either case each write statement writes onto the end of the file.

You can write a string to file object F with
F.write(<string>)

Note that this does not pad the string with any spaces, and it does not terminate
any line in the file. The statements

F.write("26")
F.write("35")

will put "2635" into the file. You need to add any separators that you want
as you write the data. If you wish to have the file organized into lines of text,
as most text files are, you need to directly write the line breaks: "\n" is the
symbol we use for this. So to write the string ”This is a line.” into file object F
we would say

F.write(" This is a line.\n")

Finally, note that you can only write a string into a text file. If you want to
output numbers, you can write them with formatted strings, as in

F.write("%d\n"%value)
or you can use str(), as in
F.write(str(value)+"\n")

Here is a simple program that reads a list of names from the user and writes
these names into a file called "names.txt”.

7.2. WRITING FILES 195

def main():
F = open("names.txt", "w")
done = False
while not done:
name=input(” Enter a name, or a blank to exit: ")
if name = "":
done = True
else:
F.write(namet+"\n")

1

main ()

Program 7.2.1: Saving strings to a file

The next program builds a file that contains a table of prime numbers. This
time we build up the data in a list, and print the list to a file at the end. Rather
than trying to divide all numbers into a given candidate, we will use the fact
that all smaller primes have already been entered into our list; these are the
only potential divisors that we need to check. The resulting program finds all
prime numbers up to one million within a few seconds.

The important function here is WriteToFile(L), which writes list L to the
file "primes. txt”. This starts by opening the file, then writing the entries one
at a time into the file. We use a formatted string:

F.write("%10d” % entry)

to guarantee that there will be white space around each number: this uses
10 spaces per entry, and the entries have no more than 6 digits. Since we use
multiple write statements per line, the formatted print statement also guarantees
that our numbers come out in neat columns.

Unless we want thousands of numbers to be printed on the same line, at
some point we need to give line breaks. Eight entries per line makes for a nice
table. We have a variable lineCount that keeps track of how many entries are
on the current line. When this gets up to 8 we terminate the line with

F.write("\n")

and reset lineCount to 0.

196 CHAPTER 7. FILES

This builds a table of primes numbers.

def isPrime(x, L):
This returns True is x is prime,
where L is the list of all primes
less than x.
for d in L:
if x%d = 0:
return False
elif dxd > x:
return True
return True

def FindPrimes(L):
This puts all primes less than 1000000 into L
for x in range(2, 1000000):
if isPrime(x, L):
L.append(x)

def WriteToFile(L):
This writes the entries of L to a file "primes. txt”,
printing 8 entries per line
F = open("primes.txt", "w")
lineCount =0
for entry in L:
F.write("%10d” % entry)

lineCount = lineCount + 1
if lineCount — 8:
F.write("\n")
l[ineCount = 0
def main():
Primes = []

FindPrimes(Primes)
WriteToFile(Primes)

main ()

Program 7.2.2: Saving prime numbers to a file

7.3. READING FILES 197

7.3 Reading Files

To open a file for reading you must use
F = open(<file name>, "r")

The file must exist and be in the right folder; it is an error to try to open a file
that doesn’t exist in the folder where the system expects to find it. For what
we are doing now, the system looks for the file in the folder that contains the
program. So until we talk about moving around in a file system, you should
place any file your program will read in the same folder as the program itself.
If you don’t, your program will crash with a ”File not found” exception.

If F is an open file — i.e., if it is the value returned by a call to open, there
are several ways to read data from F:

F.read() returns the entire file as one long string, using \n characters for line
breaks

F.read(n) returns the next n characters from the file as a string.
F. readline () returns the next line of the file as a string.

F. readlines () returns all of the file as a list of strings, each string representing
one line of the file.

You can also read the entire file with a for-loop:

for line in F:

In most situations it is easiest to read through the whole file with a for-loop.
Text files have a special end-of-line character that marks the end of each line;
this is usually denoted "\n". When you iterate through a text file with a for-
loop, this end-of-line character remains attached to the lines; your first step is
usually to eliminate it:

for line in F:
line = line.strip(”"\n")

After that, the line is a standard string that you can treat the way you would
treat any string.
Here, for example, is a program that will print its own text to the screen.

198 CHAPTER 7. FILES

This program prints the file "Program7.3.1.py",
which happens to contain the text of this
program.

def main():
F = open("Program7.3.1.py", "r")
for line in F:
line = line.strip(”"\n")

print(line)

main ()

Program 7.3.1: This prints its own text

Next, we have a program that reads a column of numbers and prints its average.
As with many situations when working with files, we dump the file of numbers
into a list, and then use our previous techniques to find the average of the list.
Note that the lines of the file are strings, so we need to convert these lines into

numbers before we average them.

def Average(L):
sum = 0
count = 0
for x in L:
count = count + 1
sum = sum -+ X
return sum/count

def main():
F = open("nums.txt”, "r")
numbers = []

for line in F:
x = int(line)
numbers.append(x)
print("1 count %d numbers.” % len(numbers))

main ()

print(" Their average is %.2f" % Average(numbers)

Program 7.3.2: This averages the numbers in a data file.

If this program sees a file "nums.txt” containing the numbers

7.3. READING FILES 199

’ mcnwpbcow‘

it outputs:

I count 6 numbers.
Their average is 4.83

As a final example, here is a similar program that reads a data file with two
columns of numbers, such as

(62BN B SOV
W
[é)]

200 CHAPTER 7. FILES

def Avg(L):
sum = 0
count = 0
for x in L:
count = count + 1
sum = sum —+ X
return sum/count

def main():
F = open("2cols.txt", "r")
columnl = []
column2 = []
for line in F:
nums = line.split ()

x = int(nums[0])
y = int(nums[1])
columnl.append(x)
column2.append(y)
avgl = Avg(columnl)
avg2 = Avg(column2)
print("1 count %d rows.” % len(columnl))
print("The averages were %.2f and %.2f" % (avgl,h avg2))

main ()

Program 7.3.3: This averages two columns of data from a file.

7.4. TRY-EXCEPT STATEMENTS 201

7.4 Try-Except Statements

In programming terminology an ezception is a terminal event, typically caused
either by an error in the code or by an unexpected input from the user. The
usual behavior of a program in the event of an exception is to crash. The
try—except statement allows you to catch exceptions before they cause your
program to crash. The form of this statement is

try:

<the try—block of code>
except:

<the except—block of code>

When this statement is executed, the system executes the try-block. If this
block of code causes no problems the except-block is ignored. However, if the
try-block causes an error the system executes the except-block. The except-
block should make up in some way for the fact that the try-block did not execute
correctly.

For example, consider the following program:

def main():
done = False
while not done:
x = eval(input(" Enter a number: "))
if x < 0:
done = True
else:
print ("100/%d = %d" %(x, 100/x))
main ()

Program 7.4.1: A program that generates an exception

If the user enters a number such as 4 the program outputs ”100/4=25". If
the user enters a negative number the program terminates. However, if the user
enters 0 the program crashes. We can use a try—except statement to avoid
this as follows:

202 CHAPTER 7. FILES

def main():
done = False
while not done:
try:
x = eval(input(" Enter a number: "))
if x < 0:
done = True
else:
print ("100/%d = %d" %(x, 100/x))
except:
print(”1 can’t divide by that.”)
main ()

Program 7.4.2: A fix for the previous program

Now if the user enters a 0 the program responds with "I can’t divide by that.”
The program goes back to the top of the input loop and asks for another number.
There is no crash and the program continues to function.

It is possible to make except-clauses respond only to specific types of ex-
ceptions. For example, the exception that is raised when we divide by 0 is called
a ZeroDivisionError. If we make the except-clause

except ZeroDivisionError:

then the block of code for this clause will be executed only for divisions by zero;
any other type of exception will not be handled by this clause. Here is a third
version of the program:

7.4. TRY-EXCEPT STATEMENTS

print ("100/%d = %d" %(x, 100/x))

except ZeroDivisionError:

print(”"1 can’'t divide by that.")
except NameError:

print ("1 said a NUMBER, doofus.")
except:

print ("Now, that's just dumb.”)

main ()

def main():
done = False
while not done:
try:
x = eval(input("Enter a number: "))
if x < 0:
done = True
else:

Program 7.4.3: Catching specific exceptions

203

Now, if the user enters 4 the program responds ”100/4=25" If the user enters
0 the program responds "I can’t divide by that.” If the user enters the string
"ten” the program responds "I said a NUMBER, doofus.” Finally, if the user
enters something silly like 723 skidoo” the program responds ”Now, that is just

dumb.”

204 CHAPTER 7. FILES

Chapter 8

Objects and Classes

The style of programming we have seen so far is called procedural programming.
This was the first programming paradigm, developed in the 1950’s and 1960’s
alongside the growth of hardware technology. In this chapter we look at object-
oriented programming, a more modern style of coding that was developed in
the 1970’s and 1980’s. The motivation for the development of object-oriented
programming was the repeated failure of programmers to eliminate bugs from
large programs written in the procedural style. Object-oriented programming
is not more powerful than procedural programming any program that can be
written in one style can be written in the other. However, in many situations
it is easier to write correct programs in the object-oriented style. In Chapter 8
we will look at programs that use graphics, animation and simulations, and you
will see that all of these lend themselves naturally to the object-oriented style.

205

206 CHAPTER 8. OBJECTS AND CLASSES

8.1 Concepts

There is some terminology that you must understand to get started on writing
object-oriented programs. The terminology is not difficult, but it is uses the
building blocks we have already seen in a new way. Here are the basic pieces.

A class is a structure that holds both data and functions for manipulating
that data. We have seen some classes before without calling them classes. For
example, Python has a class called List. A list holds sequences of whatever data
you give it, and it has functions, or methods, such as append() for manipulating
that data. The class itself is a pattern. It says what kinds of data and what
kinds of functionality instances of the class will have. You can construct specific
instances of a class, which are called objects. For example, we might have a class
Person. This would describe the data and functionality needed to represent
people. Each object of this class would represent one individual person.

Like all data, the data in an object is stored in variables. There are two
types of variables in classes: instance variables andclass variables. Each object
of a class has its own copy of each of the instance variables, so each object can
have different data stored in the instance variables. For example, in our Person
class there might be an instance variable to hold a persons name. Each object
of the class will represent a different person, and so each will have its own name.
The class variables are shared by all objects of the class; there is only one copy
of the class variables, and it is visible to all objects of the class. Our Person class
might have a class variable to hold the population size. The number of people
in existence is the same regardless of which person we ask for this number. We
refer to the instance variables of the class through objects of the class using a
dot-notation: <object_name>.<variable_name>. For example, if x is an object
of class Person we would refer to the name instance variable as x.name. We refer
to the class variables through the class itself. Person.population might be the
class variable that represent the size of the Person population.

Objects have their own functions for manipulating their data. We call the
functions contained in an object its methods. If class Person has a GetOlder()
method that adds one to the age of a person, and if x is an object of this class,
we would tell object x to get older with the code

x.GetOlder()

You might think of x.GetOlder() as a command to object x to increase its age
variable.

As we said, each object of a class has its own copies of the instance variables
and methods of the class. The class definition needs some way to refer to an
individual object’s data and methods. The word self is used for this. This
word only appears in class definitions; it always refers to the current object.
Every method of every class has self as its first argument. For example, the
GetOlder() method has header

def GetOlder(self):

8.1. CONCEPTS 207

When we call this method on a specific object, as in x.GetOlder(), the object
x is passed as the argument for self. We might have a method SetAge() that
would set the persons age to a specific value. This would have header

def SetAge(self, myAge):

and would be called as in x.SetAge(19). All methods have self as their first
argument; you never explicitly pass a value for self, but the system substitutes
the object whose method you are invoking for this argument.

The word self is used for similar reasons in references to instance variables
within the methods of a class. self .age is the age variable for whatever object
is being referenced. For example, here is the complete code for the SetAge()
and GetOlder() methods:

def SetAge(self, myAge):
self.age = myAge

def GetOlder(self):
self.age = self.age + 1

If we call x.SetAge(19), then the object stored in variable x is passed for the
self argument in method SetAge(). Then self .age, which is the value of the
age instance variable of object x, is set to 19. This notation probably seems
cumbersome at first, but with a little practice it will begin to seem natural:
x.foobar() runs method foobar() on object x.

Every class has a specific method called a constructor that is run when a new
object of that class is created. The purpose of a constructor is to give initial
values to the instance variables of the class. If the constructor has arguments,
values for those arguments must be provided when a new object is constructed.
Constructors in Python all have the name _.init__ (). Of course, since con-
structors are methods they all have self as their first argument. For example,
we might want the constructor for the Person class to give a name to the new
person. The constructor that does this is

def __init__(self, myName):
self.name = myName
self.age =0

Remember that the constructor should initialize all of the instance variables
of the class, even those that are not mentioned in the constructor’s arguments.
If we fail to initialize the variable then it doesn’t exist. For example, if the
constructor for class Person omits the line

self.age =0

then new persons will not have an age variable. If other methods, such as a
Print() method, refer to the age of the person and the age variable doesn’t
exist, our program will crash when these methods are called.

We construct objects of a class by using the class name as a function. The
function that is actually called is the __init__ () method of this class, so Python

208 CHAPTER 8. OBJECTS AND CLASSES

expects us to provide all of the arguments (except self) of this method. For
example, the __init__ () method above for class Person needs a string for the
name, so we could construct a new person with

x = Person("bob”)

Here, finally, is the complete code for a simple program that uses classes.
This defines the class Person that we have been discussing. The main() function
of the program makes use of this class definition to construct several persons,
set the age variables, and print out their information. Note that the main()
function is simple and intuitive. This is typically the case with object-oriented
programs the hard work in such programs is implementing the classes; once that
is accomplished they are usually easy to use. Note also that classes can be used
in more than one program. One of the goals of object-oriented programming is
to make reusable classes that can be written carefully and then used in a wide
range of applications. A programmer doesn’t need to know the details of how
a class is implemented in order to use it. All the programmer needs to know is
what data the class holds and what methods it offers. The List and Dictionary
classes in Python are illustrations of this. We have used these classes to write
many programs without any knowledge of how the classes are implemented.
These classes are very powerful. It is the object-oriented paradigm that allows
us to separate the implementation of the classes from their use.

8.1.

CONCEPTS 209

class Person:

def

def __init__(self, myName):
self .name = myName
self.age =0

def SetAge(self, myAge):
self.age = myAge

def GetOlder(self):
self.age = self.age + 1

def Print(self):
print ("%s is %d years old."%(self.name, self.age))

main ():

x = Person("bob")
y = Person("suzie")
z = Person("joe")

.SetAge (57)
. GetOlder ()
.GetOlder ()
.Print ()

X X X X

y.Print ()

main ()

Program 8.1.1: A complete object-oriented program

210 CHAPTER 8. OBJECTS AND CLASSES

8.2 Examples of Classes

Don’t be put off by the terminology of classes we presented in the preceding
section. Designing classes that appropriately break down complex data is a
skill that takes practice to learn. In most situations implementing classes is
easy and straightforward. One nice thing about coding with classes is that you
always have a place to start — the constructor (remember that in Python this is a
function called __init__ (self ...)) should assign a value to each of the instance
variables of the class. Whatever description you have of the class should tell
you what those instance variables are.

Example 1: Write a class that will hold data about pets. The class should
include variables for the pet’s name, species (dog, cat, hamster, etc.), color
and age. To implement this we need to make a few decisions. One concerns
changeability of the variables: once we set the species for a pet, there is probably
no need to ever change it. The same is true of the pet’s color. It may or may
not be true for the name; for simplicity in this example we will assume that
names are not modifiable. Age, on the other hand, is certainly something that
changes. For all of the variables we will create getter methods — methods that
return the value of the variables. For the changeable variables we also need to
create setter methods — methods that allow us to set or change the value of the
variable. The next decision regards the arguments to the constructor. All of
these variables will be set in the constructor; some will get default values, some
will get values specified in the arguments to the constructor. We don’t want to
make calls to the constructor too long, so it would be better to not have too
many arguments. The pet’s name and species seem like things we would want
to name when we create a pet; age and color might be specified later, so we’ll
make name and species be arguments to the constructor. One could certainly
justify other ways of doing this. Finally, we need to decide how to represent
name, species, color and age. The pet’s age is certainly a number; the other
three can easily be respresented as strings.

All of these decisions lead to the following code for the constructor:

def __init__(self, name, species):
self .name = name
self.species = species
self.color = "black”

self.age =0

As we said, this passes name and species as arguments and uses default values
for the other two variables. Don’t be confused by code such as

self .name=name

The left side of the = sign has the instance varible self .name. The right side
of the = sign has the value we are assigning this variable, which is the value of
the first argument to the constructor. If we construct a specific pet, such as

R = Pet("Rosie”, "cat")

8.2. EXAMPLES OF CLASSES 211

the instance variable elf .name} will be et to ”Rosie”.

After the constructor we define any getter and setter for each of the instance
variables. This is very easy code. For variable name we don’t need need a setter
and the getter is a one-line function:

def getName(self):
return self.name

for variable color we also have a setter:
def getColor(self):

return self.color

def setColor(self, c):
self.color = ¢

For variable age we have a getter and setter and also an increment method that
needs no arguments; it just adds 1 to the pet’s age:

def getAge(self):

return self.age

def setAge(self, x):
self.age = x

def incrementAge(self):
self.age = self.age + 1
Finally, we add a Print() method to format the instance data of an object:

def Print(self):
print ("%s is a %s %s."%(self.name, self.color, self.species))

Putting all of this together, here is our class definition:

212 CHAPTER 8. OBJECTS AND CLASSES

class Pet:

def __init__(self, name, species):
self .name = name
self.species = species
self.color = "black”

self.age =0

def getName(self):
return self.name

def getSpecies(self):
return self.species

def getColor(self):
return self.color

def setColor(self, c):
self.color = ¢

def getAge(self):
return self.age

def setAge(self, x):
self.age = x

def incrementAge(self):
self.age = self.age + 1

def Print(self):
print ("%s is a %s %s.”
%(self.name, self.color, self.species))

Program 8.2.1: A simple Pet class

Notice how simple and repetitive most of this code is. 1t is not difficult to write
code for a class once you understand what the class does; this is one of the great
attractions of this style of coding.

Here is a small main() program that uses this class defintion:

8.2. EXAMPLES OF CLASSES 213

def main():
R = Pet(" Rosie”, "cat”)
R.setColor (" black™)

N = Pet("Norton”, "cat”)
N.setColor (" orange”)
N.incrementAge ()
N.incrementAge ()

R.Print ()
N.Print ()
9

main

An application program for the Pet class

Example 2: Write a class that represents people with names and ages and
also models the ability of one person to marry another. In the preceding section
we gave a Person class:

class Person:
def __init__(self, myName):
self .name = myName
self.age =0

def SetAge(self, myAge):
self.age = myAge

def GetOlder(self):
self.age = self.age + 1

def Print(self):
print("%s is %d years old."%(self.name, self.age))

The Person class from Program 8.1.1

We need to modify this class to include the idea of marriage. Actions in classes
tend to take the form of methods — when we call a method of an object, we tell

214 CHAPTER 8. OBJECTS AND CLASSES

the object to perform that method on its data. For this class we need a method
marry() that tells one object to marry another. In terms of data what does this
do? After this method has called and returned, the object still needs to know
who it married. This means we need an instance variable spouse. This will need
to be initialized in the constructor; the easiest default value is None, which is the
value Python uses for objects that are not yet constructed. For this example we
won’t make use of age, so we will eliminate to keep our program shorter. There
would be no problem with keeping it. This makes our constructor

def __init__(self, myName):
self .name = myName
self.spouse = None

We will only let Persons marry other Persons, which means that we have access
to the instance variables of the marriage partner. To enable self to marry
Person x, we need to set self .spouse=x, but that is not sufficient. We also need
to make self be x’s spouse: x.spouse=self:

def Marry(self, x):
A person can only marry another Person
self.spouse = x
X.spouse = self

It is easy to tell if a Person is married. The following method returns True if
the current person is married, and False if that person is single:

def IsMarried(self):
return self.spouse != None

If x is married we can always find the name of x’s spouse as x.spouse.name, but
this is a bit unwieldy. Here is a method that returns the name of self’s spouse.
Of course there might not be a spouse, so we include an option for this case as
well:

def SpouseName(self):
if self.IsMarried():
return self.spouse.name
else:
return "not married”

Note how this uses the IsMarried () method: we want to know if self is married,
so we call the self . IsMarried () method.

Finally, here is a Print method that makes use of several of the methods we
have implemented:

def Print(self):
if self.IsMarried():
print("%s is married to %s” %
(self.name, self.SpouseName()))
else:
print(self.name)

8.2. EXAMPLES OF CLASSES

Here is the complete code for our new class Person:

class Person:
def __init__(self, myName):
self.name = myName
self.spouse = None

def Marry(self, x):

self.spouse = x
Xx.spouse = self

def IsMarried(self):
return self.spouse != None

def SpouseName(self):
if self.IsMarried():
return self.spouse.name
else:
return

"not married”

def Print(self):
if self.IsMarried():

else:
print(self.name)

A person can only marry another Person

print("%s is married to %s” %
(self.name, self.SpouseName()))

Program 8.2.2: Person class with marriage

And here is a main() function that makes use of this class

215

216 CHAPTER 8. OBJECTS AND CLASSES

def main():
x = Person("bob")
y = Person("suzie")
z = Person("joe")
y.Marry(z)
x.Print ()
y.Print ()
z.Print()

main ()

An application program for the Person class

Example 3: Write a class that represents names of people and can recog-
nize family names and given names. Our last example defines a Name class
where the instance variables hold the given name (self .given) and the fam-
ily name (self .family) of each object. The constructor takes a string, such
as "Fred Flintstone” and separates it into a string holding the given name or
names, and a string holding the family name. Note that there may be more
than one given name, as in ” Charles Philip Arthur George Windsor”. We could
represent this as a list of strings, but instead we will put all of the given names
into one string and the family name in another. In most situations we want one
of three things:

e The family name only
e The first name (the first of the given names) only
e The full name

All of those will be easily available in our representation.

The constructor is mostly a straightforward application of the String class
strip () and split () methods. The idea is to split the argument into a list of
strings, then pull of the last of these as the family name and concatenate the
rest together, separated by spaces, as the given name. If str is the input string
(such as "Fred Flintstone”), the following code does this:

names = str.split ()

n = len(names)
self.family = names[n—1]
given =""

for name in names[0:n—1]:

8.2. EXAMPLES OF CLASSES 217

”

given = given + name + "
self.given = given

We need to modify this slightly to account for anomalies: str might contain
only one name, as in "Madonna”, or it might even be the empty string. Single
names are easy: we just put whatever we have into the family name, and make
the given name be the empty string. An empty str is more of a problem. We
can split an empty string, but the result is an empty list and our code above fails
for an empty list. We fix this by first stripping str to eliminate any unnecessary
spaces at the front and back, and then testing whether the result is an empty
string. If so we assign the empty string to both the given name and family
name and exit. If not, we use the code above. Here is the final code for the
constructor:

def __init__(self, str):
str = str.strip ()

if str = "":
self.family =
self.given =

else:
names = str.split ()
n = len(names)
self.family = names[n—1]
given = ""
for name in names[0:n—1]:
given = given + name + " "
self.given = given

The remaining methods handle the tree cases we mention above: family
name only, given name only, first name only, or full name. Here is our class:

218

CHAPTER 8. OBJECTS AND CLASSES

class Name:

def

def

def

def

def

__init__(self, str):

str = str.strip ()

if str = "":
self.family ="
self.given =""

else:
names = str.split ()
n = len(names)
self.family = names[n—1]
given = ""
for name in names[0:n—1]:
given = given + name + " "
self.given = given

GivenName(self):
return self.given

LastName(self):
return self.family

FirstName(self):
if self.given =
return ""

else:
names = self.given.split ()
return names[0]

(RTINS

FullName(self):
if self.given = :
return self.family
else:
return self.given+self. family

nono

The Name class

Here is a short application program,which just works with the names as

names:

8.2. EXAMPLES OF CLASSES

def main ()

,_
I

rrrr
5]
o
e
[0}

for x

main ()

nd(Name(" Fred Flintstone”))
nd(Name(" Barney Rubble”))
nd(Name(”"Wilma Flintstone”))
nd (Name(" Dino"))

nd(Name(""))

nd(Name("Bam Bam Rubble”))
nd(Name("Mr. Slate”))

in L:

print(x.LastName())

Program 8.2.3: Application program using the Name class

This will print:

Flintstone
Rubble
Flintstone
Dino

Rubble
Slate

219

Here is a more interesting application. For this example we put the class by
itself in a file called " MyNameClass.py”. In a more authentic situation we would
probably call the file ”Name.py”, but I want to make a distinction between the
name of the file and the name of the class. We write a separate application
program, making use of the Name class. In this case our application is another
Person program; this time the Person class uses Name to store the person’s
name. Since the Name class is not in the same file as the application, the latter
program needs to import it. We use the syntax

from MyNam

eClass import =x

and then refer directly to the Name class. Alternatively, we could use the
following syntax for importing:

import MyNameClass

and then refer to the names as MyNameClass.Name. For example, the second

self.name =

line of the constructor would be

MyNameClass . Name(myName)

220

CHAPTER 8. OBJECTS AND CLASSES

Here is the application program:

from MyNameClass import =

class Person:
def __init__(self, myName):
self.name = Name(myName)
self.age =0

def SetAge(self, a):
self.age = a

def GetOlder(self):
self.age = self.age + 1

def Print(self):
print("%s %s” %(self.name.FirstName(),
self .name.LastName()))

def main():

= [l

= Person("Donald Ervin Knuth")
.SetAge(77)

.append(x)

I_><><I_3

= Person (" Grace Brewster Murray Hopper”)
.SetAge(109)

-append (y)

r< <

N

= Person(” Alan Mathison Turing”)
.SetAge(103)

N

L.append(z)
for person in L:
person. Print ()

main ()

Program 8.2.4: Another application program using the Name class

8.3. SPECIAL METHODS 221

8.3 Special Methods

There are a number of method names that have special significance in Python.
One of these we have already seen: the constructor method is always named
_dinit__ (). This method is called whenever a new object of the class is created;
its purpose is to give initial values to the instance variables of the object. In this
section we will see a number of similar methods that have pre-defined meanings.
All of these have names that start and end with two underscores.
First, the method __str__ (self) is called whenever the system needs to have
a string representation of the object. This method should return the string
representation. If x is an object of a class containing this method, the following
statements will all result in calls to _str__ ():

print (x)
print ("%s" % x)
y = str(x)

For example, the Person class from section 7.1 might have such a method:

class Person:
def __init__(self, myName):
self .name = myName
self.age =0

def __str__(self):
return "%s is %d years old."% (self.name, self.age)

Program 8.3.1: A Person constructor and __str__ method

This would eliminate the need for a separate Print() method for this class; we
could use the standard Python print statement to print objects of the class. Of
course, nothing requires us to return a string containing all of the instance vari-
ables of the class. For some applications we might want the string representation
of a person to consist of just the persons name:

def __str__(self):
return self.name

We can also define methods that implement arithmetic operators in any
class. The methods:

__add__(self,
__sub__(self,
_-mul__(self,
__div__(self,

X X X X

— — — —

222 CHAPTER 8. OBJECTS AND CLASSES

are called when the operators +, —, *,and / are used. Each of these methods
should return a new object that is the result of the operation. For example,
if a and b are objects of a class that defines these operators, we might use the
statement

c = atb

Variable ¢ then gets the value that is returned from the call to the method
_-add__(a, b). Argument self refers to the object that is the left operand and
argument x is the right operand.

In the next example we define a class Cents that represents money. Objects
of this class have one instance variable, which holds the value of the object in
pennies (so a value of 420 represents $4.20). We define a _str__ () method
to allow objects of the class to be printed, and an __add__() method to allow
monetary values to be added.

class Cents:
def __init__(self, x):
self . value = x

def __str__(self):
dollars = self.value/100
cents = self.value % 100
if cents < 10:
return "$%d.0%d” % (dollars, cents)
else:
return "$%d.%d" % (dollars , cents)

def __add__(self, x):
v = self.value 4+ x.value
return Cents(v)

def main():
x = Cents(405)
y = Cents(995)
print ("%s + %s = %s" % (x, y, xt+y))

main ()

Program 8.3.2: Adding elements of a class

We can also implement methods that allow us to use comparison operators
between objects of a class. The method names

ot (self, x)
__le__(self, x)

8.3. SPECIAL METHODS 223

__eq__(self, x)
__ne__(self, x)
__ge__(self, x)

__gt__(self, x)

refer to the operations <, <=, ==, |=, >= >. In particular, if the __lt__ ()
method is defined, then lists of objects of this can be sorted with the list sort()
method.

Our last example adds comparison operators to the Name class we created
in Section 8.2. We use the usual phone-book ordering for names: a < b if a’s
last name comes before b’s in alphabetical ordering, or if the two last names are
the same and a’s first name comes before b’s first name. In the name class the
instance variable that holds the last name is self . family, and the variable that
holds the first name is self . given. Our comparison operator is thus

def __lt__(self, x):

if self.family < x.family:
return True

elif self.family > x.family:
return False

elif self.given < x.given:
return True

else:
return False

This turns the class definition into

224

CHAPTER 8. OBJECTS AND CLASSES

class Name:
def __init__(self, str):

def GivenName(self):

def LastName(self):

def FirstName(self):

def FullName(self):

def __It__(self, x):

str = str.strip ()

if str = "":
self.family ="
self.given =""

else:
names = str.split ()
n = len(names)
self.family = names[n—1]
given = ""
for name in names[0:n—1]:
given = given + name + " "
self.given = given

return self.given

return self.family

(RTINS

if self.given =
return ""
else:
names = self.given.split ()
return names[0]

nono

if self.given = :
return self.family

else:
return self.given+self. family

if self.family < x.family:
return True

elif self.family > x.family:
return False

elif self.given < x.given:
return True

else:
return False

The Name class with a comparison operation

8.3. SPECIAL METHODS

225

We now return to the Person class that uses Name. If we add a simple comparison
function to this, just comparing the names, we can then sort lists of Persons:

class

main ()

import MyNameClass

Person:

def __init__(self, myName):
self.name = MyNameClass.Name(myName

self.age =0

def SetAge(self, a):

self.age = a

def GetOlder(self):

self.age = self.age + 1

def Print(self):
print("%s %s"” %(self.name.FirstName(),

self.name.LastName()))
def __lt__(self, x):

return self.name < x.name

def main():
L=]
L.append(Person("Harry Potter”))
L.append(Person("Hermione Granger”))
L.append(Person("Ron Weasley”))
L.append(Person (" Albus Dumbledore”))
L.append(Person("Severus Snape”))
L.append(Person("Draco Malfoy”))
L.sort()

for person in L:

person. Print ()

~—

Program 8.3.3: Sorting elements of the Person class

This outputs

226

CHAPTER 8.

Albus Dumbledore
Hermione Granger
Draco Malfoy
Harry Potter
Severus Snape
Ron Weasley

OBJECTS AND CLASSES

8.4. SUBCLASSES 227

8.4 Subclasses

There are many natural situations where some elements of a class have more
or different properties than the other elements. For example, all people have
names and addresses. Some people, the students, also have majors and gpas.
Other people have job titles and annual salaries. Subclasses give a way to model
these situations. A subclass refines a class by adding more instance variables or
new methods.

There is a variety of terminology for classes and subclasses. Some people
call the class being refined the ”super class”. Some people call the subclass a
”child class” and the class it refines the ”parent class”. Whatever terminology
you prefer, the refining class is generally smaller than the class it refines. Every
element of the subclass is also an element of the parent class. The converse of
this is false. For example, every student is a person, but not every person is a
student. This means that all of the instance variables and all of the methods of
the parent class are available to the subclass. We say the subclass inherits the
data and methods of the parent class. The subclass may alter the definition of
the methods of the parent class, or it may use them unaltered.

Why do we use subclasses? One reason is that they allow us to avoid re-
implementing the methods of the parent class. Anything that allows us to re-use
code helps to avoid errors in the code. Another reason is that this is a good
organizational tool. Suppose we have classes that represent various geometric
shapes: Square, Circle, and Polygon. If they are all subclasses of a basic Shape
class, and if this Shape class has a method Moveto() then we know they all
have such a method. This means we could put any of these shapes into a list
and move them by processing the list with a for-loop without worrying which
class a particular shape is from.

A subclass definition looks just like a class definition, only it contains the
name of the parent class in parentheses, as in

class Circle(Shape):

Python allow a class to inherit from several parent classes. Setting up mul-
tiple inheritance correctly is not easy and we generally will avoid the problems
this creates by only giving classes a single parent.

Subclasses inherit the methods of their parent classes. If the subclass pro-
vides a new definition of a method of its parent, the subclass has access to both
version of the method, with the parents version accessed as <class name>.<method name>(self,)
For example, subclasses usually overwrite the constructor method __init__ ()
of the parent. If class B is a subclass of class A, then inside B we can refer to
As constructor as A. _init__ ()

Here is an example of two classes: Person and Student, with Student a sub-
class of Person. Note that the Student constructor calls the Person constructor,
and also the method SetAge() method of class Person. Class Student does not
give a new version of the _str__ () method of class Person; it just uses the
version inherited from Person.

228 CHAPTER 8. OBJECTS AND CLASSES

class Person:
def __init__(self, myName):
self.name = myName
self.age =0

def SetAge(self, a):
self.age = a

def __str__(self):
return "%s, who is %d years old"%(self.name,self.age)

class Student(Person):
def __init__(self, myName):
Person. __init__(self, myName)
self.SetAge(18)
self.major =" "

def SetMajor(self, subject):
self.major = subject

def Major(self):
return self.major

def main():
x = Student (" joe")
x.SetAge(21)
x.SetMajor (" Computer Science”)
print (x)

main ()

Program 8.4.1: Class Student is a subclass of Person.

In the next example we model the payroll office of a company that has three
kinds of workers: hourly workers, who have an hourly wage and work 40 hours
per week, salaried workers who have an annual salary and are paid every fourth
week, and interns,who arent paid at all. Each class of workers has a method
Pay() that takes as argument a week number (the weeks are numbered 0, 1, 2,
and so forth). The hourly workers are paid each week. The salaried workers are
paid when the week%4 is 3 (i.e, on the last week of each month). The constructor
for each class calls the Employee constructor, as that assigns a unique employee
number to each staff member. The individual subclass constructors also save
their own information, in addition to the work of the Employee constructor.

Here is the top class: Employee:

8.4. SUBCLASSES 229

Class Employee has the code common to all employees,
There are 3 subclasses that refine Employee with more
details.

class Employee:
Count = 0
def __init__(self, name, jobTitle):
self .name = name
self.title = jobTitle
Employee. Count = Employee.Count + 1
self.employeeNumber = Employee. Count

def Print(self):
print "Name: %s Employee Number: %d Title: %s” % \
(self.name, self.employeeNumber, self . title)

def Pay(self, week):
pass

Program 8.4.2: The top-level class.

Note the use of the pass command in Employees Pay() method. This is one
way to have a function in Python that does nothing — the system ignores the
pass statement. Functions must have something in the body, so some statement
that has no effect is necessary.

Next we have the definitions of the three subclasses of Employee: HourlyWorker,
SalariedWorker, and Intern. Each of these only needs to implement the portion
of their functionality that is not covered in class Employee.

230 CHAPTER 8. OBJECTS AND CLASSES

class SalariedWorker (Employee):
Salaried workders are paid once a month
(every 4th pay period). Then they are paid
one twelfth of their annual salary

def __init__(self, name, jobTitle, annualSalary):
Employee. __init__(self, name, jobTitle)
self.salary = annualSalary

def Print(self):
print("%s is a salaried worker with salary $%d” %\
(self.name, self.salary))

def Pay(self, week):
if week % 4 = 3:
print ("Pay %s $%.2f" % \
(self.name, self.salary/12.0))

class HourlyWorker(Employee):
Hourly workers are paid every week.
Each period they are paid 40 times their hourly wage.
def __init__(self, name, jobTitle, hourlyWage):
Employee. __init__(self, name, jobTitle)
self.wage = hourlyWage

def Print(self):
print("%s is an hourly worker with wage $%d" % \
(self.name, self.wage))

def Pay(self, week):
print ("Pay %s $%.2f" % \
(self.name, self.wagex40))

class Intern(Employee):
Interns aren’'t paid
def __init__(self, name):
Employee. __init__(self, name, "Robot")

def Print(self):
print("%s is an intern” % (self.name))

Program 8.4.2: 3 subclasses of Employee.

Finally, we have two utility functions: one for maintaining a list of all em-
ployees and one for processing this list to pay all of the employees that need

8.4. SUBCLASSES 231

paying in a given week. Note that we can put employees into the employee list in
any order, and we can process this list without worrying about what class each
element of the list comes from. All of the objects have a Pay() method (even
the unpaid interns; they inherit the default Pay() method from class Employee).
This ability to manage a variety of classes as though there are all the same class
is one of the great strengths of subclasses.

def Hire(list, employee):
list .append(employee)

def PayWorkers(list , numWeeks):
for week in range(0, numWeeks):
print("Pay period %d" % week)
for employee in list:
employee . Pay(week)

def main ():
Staff = []

Hire(Staff , SalariedWorker (" Suzie” ,”" Engineer” ,50000))
Hire(Staff ,SalariedWorker (" Bob" ," Boss” ,120000))

Hire (Staff ,HourlyWorker (" Fred” ,” Construction Worker” ,10))
Hire(Staff , Intern (" Mary”))

Hire(Staff , Intern("Herman"))

for x in Staff:
x.Print ()

PayWorkers(Staff, 12)

main ()

Program 8.4.2: Finishing the program.

232 CHAPTER 8. OBJECTS AND CLASSES

8.5 Object-Oriented Design

When you are faced with an open-ended problem of designing a program, object-
oriented techniques can help. In many situations data elements can be organized
into classes, which are usually easy to implement. If you can express the central
algorithms of the problem in terms of these classes you probably have a good
design for the program. For example, a program that records students grades
(a virtual Registar program) might have a Person class, with subclasses for Stu-
dents and Faculty, and a Course class, where a course would have an instructor
and a list of Students. Each Student would have a current Schedule, with a
list of classes, and a Transcript, which would include a list of class names and
grades. A Student taking a Course would be represented by adding the student
to the Course object’s list of students,then at the end of the term getting a grade
from the instructor and the course name and grade being added to the Student’s
transcript. By the time you implemented all of these classes the program would
be mostly written.

For another example, suppose you are creating a predator-prey simulation.
You would need a Predator class that describes the predator’s ability to move
around and locate the prey, and the predator’s ability to kill nearby prey. You
would have a corresponding Prey classes that describes the prey’s ability to avoid
being eaten. You might have an Environment class that both the Predator and
Prey classes interact with. And you might have a World class that consists of
a large grid, every cell of which has an Environment object and possibly one or
more Predator and Prey objects.

Once you have identified possible classes for your program, try to write a
brief description of each class. The closer the classes are to physical objects, or
to objects that could be physical, the easier they will be to code. Try to write
down the data elements of each class, and what kinds of Python representation
each will have. Then write a description of each of the major methods of each
class. You should do all of this before you start coding If you can describe the
functionality of your program in terms of the class methods and you can see
how to implement each of the methods, you have a winning program design that
should be straightforward to implement. If you can’t do these things there is
no point in starting the coding. Try looking for a solution in terms of different
class breakdowns.

As a demonstration of this we will develop a card game. This game will
be played with a standard deck of 52 playing cards, with 13 cards in each of
the suits Hearts, Spades, Diamonds and Clubs. To avoid implementing lengthy
rules (which is better, a Full House or a Flush??) the game we will implement is
the children’s game War — on each round all of the players turn over their next
card; the highest card wins. If there is a tie the players go again. The player
who wins the most cards wins the game. This is not a very interesting game to
play and it is even more uninteresting too watch, but the techniques and much
of the code we will develop could be used to implement more interesting card
games, from Go Fish to Texas Hold ‘Em.

Our game will need 3 classes:

8.5. OBJECT-ORIENTED DESIGN 233

e class Card represents a single playing card. The data Card needs is the
suit and name of the card. The names will be strings: 727, 737, 74”7, ...,
up to 7107, 7 Jack”, ”Queen”, "King” and ” Ace”. For suits we could easily
use the strings ”Hearts”, ”Spades” and so forth, but for fun we will take
advantage of Python’s use of Unicode and use graphical representations
of the suits. The Heart symbol is chr(9825), Spades is char(9824), Clubs
is char(9827), and Diamonds is chr(9826). Cards don’t do anything, so
our only methods will be a constructor, a __str__ () method for printing,
and a few comparison methods.

e class Deck will represent a deck of 52 cards. The only data is a list of the
cards currently in the deck. Besides a constructor we need a method for
shuffling the deck and another for dealing cards to players.

e class Player will represent one player of the game. This is a very simple
class that keeps track of the player’s name, current hand, and points. The
only method this needs other than a constructor is a method that reveals
the next card in the player’s hand.

We will begin with the Card class. We’ll define constants at the top that give
the Unicode characters for our suits; this is the only place in the entire program
we’ll need to refer to these characters. Elsewhere we can refer to these suits as
Card.HEARTS, Card.SPADES, and so forth. The constructor just assigns values;
the real work has to be done by whoever calls the constructor.

Here is the complete code for the Card class:

234 CHAPTER 8. OBJECTS AND CLASSES

class Card:
HEARTS = chr(9825)
SPADES = chr(9824)
CLUBS = chr(9827)
DIAMONDS = chr(9826)

def __init__(self, name, suit, value):
self .name = name
self . suit = suit
self.value = value

def __str__(self):
return "%s %s” %(self.name, self.suit)

def __lt__(self, x):
if self.value < x.value:
return True
else:
return False

def __gt__(self, x):
return self.value > x.value

def __eq__(self, x):
return self.value — x.value

The Card class

Note the __It__ () and __gt__ () methods. These give two different ways to write
similar comparisons. In __lt__ () we do the comparison with <, look at the
result, and decide what to return. In __gt__ () we realize that what we need to
return is the result of the > comparison; we could just as easily have written
t () as

def __It__(self, x):
return self.value < x.value

The Deck class only has three methods, but each is more substantial than any-
thing in the Card class. The constructor isn’t difficult, but it requires some
organization. We start by initializing the instance variable that will hold the
list of cards in the deck to the empty list: self .cards=[]. Then, for each suit
we add each of the number cards. Note that if x is a number betweem 2 and
10, str(x) is the string version of the number: ”2” for 2, 710” for 10. After

8.5. OBJECT-ORIENTED DESIGN 235

the number cards we add the Jack, Queen, King and Ace. The number on the
number cards is the card’s numeric value for comparison purposes; the value of
a Jack is 11, that for a Queen is 12, for a King is 13 and for an Ace is 14. Note
that in some card games an Ace is low, and in some it is either high or low; in
ours it is always high. It would be possible to design a different class that had
options for how the Ace is treated.

Here is the constructor code:

def __init__(self):
self.cards = []
for suit in [Card.HEARTS, Card.SPADES,
Card .DIAMONDS, Card.CLUBS]:
for number in range(2, 11):
self.cards.append(Card(str(number),
suit , number))
self.cards.append(Card("Jack”, suit, 11))
self.cards.append(Card(”" Queen”, suit, 12))
self.cards.append(Card (" King”, suit, 13))
self.cards.append(Card("Ace”, suit, 14))

In most card games the dealer cycles around all of the players giving each
one card until everyone has the right number of cards. This guards against
poorly shuffled decks and also provides some protection against a malicious
dealer stacking the deck. We are not concerned about either of those problems
since we will control how the cards are dealt, so it seems easier to have the
Deal() method take the appropriate number of cards off the top of the deck and
return them as a list of cards. We must remember to remove them from the
deck so they can’t be given to any other player. The only issue is what to do if
the deck runs out of cards. Our solution is to give as many cards as the deck
has, though you could make an argument for throwing an exception or taking
other drastic action. Here is the resulting Deal method.

def __init__(self):
def Deal(self, n):
returns a list of n cards
L =]
for i in range(0, n):
if len(self.cards) > 0:
card = self.cards[0]
del self.cards[0]
L.append(card)
return L

The remaining method for the Deck class is Shuffle (). There are simple ways
to randomize the elements of a list, but we are going to use a formal shuffling
algorithm that has been proven to be fair: if the random number generator we
use is good, our shuffle algorithm produces every possible ordering of the list
and all of these orderings are equally likely. This is known as the Fisher-Yates

236 CHAPTER 8. OBJECTS AND CLASSES

shuffle since it was first defined by statisticians Ronald Fisher and Frank Yates
in 1938. It is also called the Knuth shuffle since it was popularized by Donald
Knuth in The Art of Computer Programming. The idea behind this algorithm
is simple. We start at the end of the list and work our way towards the front.
At each step we swap the current element with a random element closer to the
front. When this is finished, the list is sorted:

def Shuffle(self):

n = len(self.cards)—1

while n > 0:
k = randint (0, n)
swap the kth and nth cards
A = self.cards[k]
B = self.cards[n]
self.cards[k] =B
self.cards[n] = A
n=n-1

Altogether, here is the complete Deck class:

8.5. OBJECT-ORIENTED DESIGN 237

from Card import x
from random import x

class Deck:
def __init__(self):
self.cards = []
for suit in [Card.HEARTS, Card.SPADES,
Card .DIAMONDS, Card.CLUBS]:
for number in range(2, 11):
self.cards.append(Card(str(number),
suit , number))
self.cards.append(Card("Jack”, suit, 11))
self.cards.append(Card (" Queen”, suit, 12))
self.cards.append(Card("King”, suit, 13))
self.cards.append(Card("Ace”, suit, 14))

def Deal(self, n):
returns a list of n cards
L= 1]

for i in range(0, n):
if len(self.cards) > 0:
card = self.cards[0]

del self.cards|[0]
L.append(card)
return L

def Shuffle(self):

n = len(self.cards)—1

while n > 0:
k = randint (0, n)
swap the kth and nth cards
A = self.cards[k]
B = self.cards[n]
self.cards[k] =B
self.cards[n] = A
n=n-1

The Deck class

With just this much we can implement a simple game I call Cut the Deck. We
make a deck and two players each ”cut the deck” by choosing an index between
0 and 51. The one who gets the higher card wins. If the cards have the same

238 CHAPTER 8. OBJECTS AND CLASSES

value they go again.

This is a simple game simulating two people
cutting a deck of cards.

The game continues until one gets a higher
card than the other.

from Deck import x

def cut(deck, player):
index = eval(input(”"Where does %s cut the deck? ”
% player))
if index >= 52:

index = 52
elif index < 0:
index = 0

return deck.cards[index]

def main():
D = Deck()
playerl = input("Who is the first player? ")
player2 = input("Who is the second player? ")
done = False
while not done:
D.Shuffle()
cardl = cut(D, playerl)
print("%s draws %s" %(playerl, cardl))
card2 = cut(D, player2)
print("%s draws %s” %(player2, card2))

if cardl > card2:
print("%s wins!” %playerl)
done = True

elif card2 > cardl:
print ("%s wins!” %player2)
done = True

else:
print("Tie; play again.”)

main ()

Program 8.5.1: Game CutTheDeck

For our War game we need a player class. This will keep track of the player’s
name and hand of cards. In one round of the game each player plays one card;

8.5. OBJECT-ORIENTED DESIGN

239

since this involves multiple players it isn’t a method of the Player class. Instead
we give the class a method for playing one card, and put off the rest for our

final implementation of the game. Here is the player class:

from Deck import x

class Player:
def __init__(self, name, deck, numCards):
self .name = name
self .hand = deck.Deal(numCards)

self.points = 0

def nextCard(self):
card = self.hand[0]
del self.hand[0]
print ("%s plays %s" %(self.name, card))
return card

The Player class

Finally, we need to implement the game itself. This has a play() function that
has each player play one card. The cards are compared. If there is a winner
the appropriate number of points (the number of cards won) are added to that
player’s total score; if there is no winner the play continues. Naturally, a loop
describes this; it continues until one of the players wins or the players run out

of cards.

The rest of the game is described in the main() function. This gets the
players’ names, constructs the players, and calls the play() method in a loop
until the players run out of cards. At the end it reports the winner: the player

with the highest score. Here is the full game:

240 CHAPTER 8. OBJECTS AND CLASSES

from Player import =x

def play(playerl, player2):
points = 0
done = False
while not done:
cl = playerl.nextCard()
c2 = player2.nextCard()
points = points+2
if cl > c2:
playerl.points = playerl.points + points
print("%s has %d points\n” %
(playerl.name, playerl.points))
done = True
elif c2 > cl
player2.points = player2.points + points
print ("%s has %d points\n” %
(player2.name, player2.points))

done = True
elif len(playerl.hand) = 0:
done = True

def main():
deck = Deck()
deck.Shuffle ()
playerl = Player("bob”, deck, 26)
player2 = Player (" marvin”, deck, 26)

while len(playerl.hand) > O:
play(playerl, player2)

if playerl.points = player2.points:
print (" Tie game")
else:
if playerl.points > player2.points:
winner = playerl
else:
winner = player?

print("%s wins with %d points” %
(winner .name, winner.points))

main ()

Program 8.5.2: Game CutTheDeck

8.5. OBJECT-ORIENTED DESIGN 241

Notice how easy the game was to implement after all of our classes were defined.
This is a sign of a successful object-oriented design. If you can’t use the classes
to solve the overarching problem you are working on, you probably haven’t yet
found a good class system for your problem.

242

CHAPTER 8. OBJECTS AND CLASSES

8.6 Exercises

Write a complete Python program to solve each of the following problems.

8.1.

8.2.

8.3.

Make a program containing class Student. This class should have two
instance variables: name and age. The constructor takes a name argument
and uses it to initialize the name instance variable; it also initializes the
age instance variable to 18. The class has a SetAge() method that can set
the age to any other value. Finally, the class has a Print() method. Here
is a main() method for your program:

def main():
x = Student("bob”)
x.SetAge(23)
x.Print ()

Give class Student in problem 8.1 an instance variable Gender, which can
be "M" or "F". Modfiy the constructor for Student to take a gender
argument as well as a name argument to give a value to this variable.

Give the Student class in problem 8.2another instance variable: transcript .
This is a list of pairs, where the first element of the pair is the name of a
course, and the second element is a numeric grade between 0 and 4.There
are two additional methods:

AddCourse(self) which asks the user for a course name and grade, and
appends this pair onto the transcript, and

GPA (self) which averages all of the grades in the transcript and returns
the average.

The main program

def main():
x = Student("bob”, "M")
x.AddCourse()
x.AddCourse ()
print X.GPA()

will cause the system to twice ask for course name and grade. If you
supply the following information:

Course name? Basketweaving
Grade for Basketweaving? 4
Course name? Time Wasting
Grade for Time Wasting? 3

then the print statement print X.GPA at the end of main() will print 3.5

8.6. EXERCISES 243

8.4.

8.5.

8.6.

Give class Student in problem 8.1 another instance variable Roommate.
This can either have value None, or an object of class Student. Give the
class a method AssignRoommate() to give a value to this variable.

Make another class Faculty in problem 7?7, which just has one instance
variable, varname. The only methods Faculty needs are a constructor and
a Print () method. Add to class Student an instance variable advisor. This
should be initialized to None in the Student constructor. Give Student a
method AssignAdvisor () that assigns an advisor (a faculty member) to the
student.

The relationship between Faculty and Student in problem 8.5 is too one-
sided. Give to class Faculty an instance variable Advisees, which is a list
of all of the advisees the faculty member has. Add to Faculty a method
AssignAdvisee() that will append a student to the Advisees list. If x is a
Student and y is a Faculty, then x. AssignAdvisor (y) and y. AssignAdvisee(x)
should do the same thing.

244 CHAPTER 8. OBJECTS AND CLASSES

Chapter 9

Graphics and User
Interfaces

In the early days of personal computers Macintosh, Windows, and Unix systems
had completely different sets of tools for creating graphical user interfaces. Port-
ing a program from one system to another was very difficult because there was
no simple way to translate the interface design from one platform to another.
This was a difficult situation for both programmers and users. In 1991 John
Ousterhout, who was a professor at UC Berkeley, announced the tk toolkit for
building user interfaces. This was a system that could be implemented on all
of the major platforms and programs would run the same way on any of them.
tk is now built into the operating systems of almost all computers. Python
provides a module called tkInter to interface with the tk library. In this chapter
we will see ways to make use of this module.

This chapter makes lots of use of classes and subclasses, so if you are not
on top of that material you might want to review Chapter /refChapter8 before
proceeding. In this chapter you will see some of the great advantages of pro-
gramming with classes: we can use the class structure to hide most of the ugly
implementation details and only keep in front of us the portions of the code
that change for our particular program. This makes user-interface program-
ming, which used to be the realm of advanced professionals, accessible to all
programmers.

245

246 CHAPTER 9. GRAPHICS AND USER INTERFACES

9.1 Tk Concepts and Terminology

To get started wth tk we need a little terminology. A widget is any kind of
graphical element: a window, a button, a checkbox, or anything else that holds
information that the user can interact with. A frame is any kind of window that
can hold other widgets. A canvas is a specific type of window that allows us to
draw into it. Buttons are widgets you click on, text boxes are widgets you can
write it, scales are widgets that allow you to select one value from a range of
values, and labels are widgets that hold a string they are like text boxes only
not interactive. tk treats a menu as a button when you click on it the menu
opens up and displays a list of items to choose from; you select an option by
clicking on one of these items. There are a few more widgets in tk, but we will
see those later. Each of the widgets is represented in tk by a class; we make a
widget by constructing an object of the class.

A typical interface for a program will have a main window that holds the
entire interface. At the top of this window is a frame that I call a "menu bar”;
this holds the menu items, buttons, scales and so forth that control the program.
Below the menu bar is a canvas on which we can draw. The program that creates
this sets up the widgets and then calls the mainloop() method of the Frame class.
This method waits for user interactions and responds to them. Its actual code
is more complex, but pseudo-code for the mainloop() method is

def mainloop(self):
while True:
if there—is—user—interactio ():
respond—to—user—interaction ()

You will notice that there is no way out of this loop. The Frame class has a
method quit() that exits you from the loop and from the program. If you
want to have an animation running on the canvas, you can call an Animate()
function for the program. This is similar to mainloop() only it does one step of
the animation each time around the loop:

def Animate(self):
while True:
if there—is—user—interactio ():
respond—to—user—interaction ()
<do one step of the animation>

Program 9.1.1, which follows, shows a complete graphical program. This is
a relatively simple program, with one button and one menu. The menu has
options that allow for different strings to appear in a label widget below the
control items. Here is a picture of the window this program creates:

" e)

Quit | Talk

Howdy

9.1. TK CONCEPTS AND TERMINOLOGY 247

The program is simple, but it has all of the elements of more complex GUIs.
You can use it as a template for future programs. We will discuss the program
in general terms here, then give details for each of the widgets it contains.

Program 9.1.1 creates a class GUI that is a subclass of tklnters standard
Frame class. In the main() function it constructs and instance of this class and
calls the mainloop() method of the Frame class. That is all it does; the rest is
handled by the Python system.

Since class GUI is a subclass of Frame, the first thing the constructor for
class GUI does is to call the Frame constructor: Frame. __init__ (). In addition
to self, this has one required argument: the parent object of the Frame being
constructed. All widgets need this argument for their constructors. In this
case the Frame being constructed is a top-level window; it has no parent, so
we pass the "unconstructed object” None. The call to the grid() method of
the Frame class makes this window visible. All widgets have a grid() method.
Until you call it the objects will exist but not be visible. There are several
kinds of arguments you can give this method. If you call the method with no
arguments it makes the widget visible and places it wherever the Python system
thinks appropriate. If you call it with row and column arguments, as we do with
some of the other widgets, the widget will be made visible and placed at in this
location within its parents window.

Next, the constructor calls a function to create a menu system, then a func-
tion to create a quit-button; both of these are placed in row 0 of the windows
grid. Finally, it creates a Label widget and places it in row 1 of the grid. A
string variable called outputString is created to supply the text of this widget.
We change labels by modifying this string variable.

Here is the full text of the program. We will follow this with more details
about the various widgets created in the program.

248 CHAPTER 9. GRAPHICS AND USER INTERFACES

from tkinter import x*

class GUI(Frame):
def __init__(self):
Frame. __init__(self, None)
self.grid ()

MenuBar = Frame(self)
MenuBar. grid ()

self.makeTalkMenu(MenuBar)

QuitButton=Button (MenuBar, text="Quit" ,command=self.quit)
QuitButton. grid(row = 0, column = 0)

self.outputString = StringVar(value = "")
PrintBox = Label (MenuBar, textvar=self.outputString)
PrintBox.grid(row = 1, column = 0, columnspan=2);

def makeTalkMenu(self, MB):

Talk_button = Menubutton(MB, text='Talk")

Talk_button.menu = Menu(Talk_button)

Talk_button ['menu’] = Talk_button .menu

Talk_button.grid(row = 0, column = 1)

Talk_button.menu.add_command(label="Say Hi',\
command=self . hi)

Talk_button .menu.add_command(label="Say Bye', \
command=self .bye)

def hi(self):
self.outputString.set (" Howdy")

def bye(self):
self.outputString.set("Bye bye")

def main():
window = GUI()
window . mainloop ()

main ()

Program 9.1.1: A first GUI program

9.1. TK CONCEPTS AND TERMINOLOGY 249

Menus
In TkInter, a "menu” consists of

9.1. A menu button, which is the top-level string the user clicks on to display
the menu options.

9.2. A menu of items, one of which will be selected when the user clicks on it.
We create this in three steps:

a. Calling the Menubutton() constructor to make the menu button. This
needs to arguments: the parent window where this button lives, and a
text variable that holds the string that represents the menu.

b. Setting up the menu that holds the items. This takes two statements: one
call to the Menu() constructor,which needs only the name of the menu
button, and one assignment that links the Menu() constructor to the
menu button

c. A series of statements that create the individual menu items. Each of
these needs a string for its label,and a command function that will be
called when this item is selected. This command function should take no
arguments.

For our program these statements are

Talk_button=Menubutton (MB, text="Talk ")

Talk_button.menu=Menu(Talk_button)

Talk_button['menu’']=Talk_button.menu

Talk_button.grid(row = 0,column = 1)

Talk_button .menu.add_command(label="Say Hi’',command=self.hi)
Talk_button.menu.add_command(label="Say Bye',command=self.bye)

We could have as many Talk_button.menu.add_command() lines as we wish; each
adds another item to the menu.

Buttons

These are created with one call to the Button() constructor. This needs 3
arguments:

a. The parent widget that gives the window where the button lives
b. The text to be printed on the button

¢. The ”command” or callback function to be called when the user clicks on
the button. Again, this should be a function with no arguments.

In our program we create a quit-button with

QuitButton = Button(MenuBar, text="Quit”, command = self.quit)

250 CHAPTER 9. GRAPHICS AND USER INTERFACES

The callback function we use, self . quit(), is a standard method of the Frame
class. We create the button in our GUI subclass of Frame, so this method is
inherited by the subclass.

Labels

These are generally static holders of strings To make a simple label we use the
Label() constructor which needs 2 arguments:

a. The parent widget that gives the window where the label lives.
b. A text string to be printed for the label.

We could make such a label with a statement like
Label(parent, text = "This is a string")

In our case we want the text of the label to be modifiable, so we go one
step further. Instead of a static string as the text of the label we give a control
variable that can be dynamically modified by our program. There is a separate
class for each kind of control variable: IntVar, StringVar, and DoubleVar (a
floating point control variable). Each has a value instance variable to hold the
value of the control variable, and each class has set() and get() methods to
manipulate this value. Accordingly, we create this control variable with

<name> = StringVar(value = "string")

and we assign it to the label as its textvar field.

The only other items our program needs are the callback functions to be
called when the user selects the menu items. These are registered with the
program when the menu items are created. Here is a typical one; it changes the
label’s textvar value to the string " Howdy".

def hi(self):
self.outputString.set (" Howdy")

We make this a method of the GUI class, though it could just as easily be a
stand-alone function. As a method it needs self as a formal parameter; as a
stand-alone function it would have no parameters.

9.2. WIDGETS WITH VALUES 251

9.2 Widgets with Values

A variety of tk widgets allow the user to enter values that are accessible to the
program. In this section we focus on two of these: scales, which have sliders
that allow the user to choose a value out of a range of values, and entry boxes,
that allow the use to type a value. These two classes of widgets will handle
most of the data entry situations you are likely to encounter.

Both of these widgets make data available to the program via control vari-
ables. We used a control variable in section 8.1 when we wanted to make the
text of a label change according to input from our program. The control vari-
able mechanism provides a uniform way the system can pass data between your
program and its user interface. There are three classes of control variables:

e IntVar(), which holds an integer value

e DoubleVar(), which holds a floating point value (double is an old C term
for a certain kind of float point value)

e StringVar(), which holds a string.

The datum held by these objects is stored in a variable called value. There are
two methods for objects of each class: get() returns the value stored in the
object, while set(v) stores v as the value of the object.

For example, we we want to make an integer control variable and give it the
value 8, we would use the code

numVertices = IntVar()
numVertices.set (8)

If at some future point we wanted to retrieve the value stored in numVertices,
we would say

n = numVertices.get()

The Scale class is used to make widgets that allow the user to select one value
out of a range. The constructor for this class has many defaulted parameters;
here is a typical call, with the only parameters we usually need to give values
to

Scale(parent, \
from_ = <low end of range>,\
to = <high end of range>, \
orient = <HORIZONTAL or VERTICAL>, \
variable = <control variable>)

As with all of the widgets, the first argument is the parent window in which
the widget lives. We save the value returned by this constructor, since we need
it for the grid() method; the widget is not visible until we place it in its grid
location.

For example,

252 CHAPTER 9. GRAPHICS AND USER INTERFACES

numVertices = IntVar ()

vScale = Scale(MenuBar, from_=1,to=100, \
orient=HORIZONTAL, variable= numVertices)

vScale.grid (row=0, column=2)

You may attach a callback function to a scale, but if you do it will be continu-
ously called as the user drags the scales slider. This may be what you want, but
in many situations you want to wait until the user has finished with the scale
before taking action. If this is your choice, use the code above for the Scale
widget and provide a button next to the scale for the user to click after the
scale is adjusted. The buttons callback can refer to the scales control variable
to see the value the scale is set to.

If you do wish to use a callback function, you should assign it to the command
parameter in the Scale constructor. For example,

numVertices = IntVar ()

vScale = Scale(MenuBar, from_=1, to=100, \
orient=HORIZONTAL, variable= numVertices, \
command=Draw)

The callback function for a scale must take one argument, which will be the
scales current value. For technical reasons this argument is given a string value;
if you want it to be an integer you must convert it.

For example, the following might be the start of the code for the Draw
function in the Scale constructor above:

def Draw(string_n):
n = str(string_n)
< code to draw a polygon with n vertices>

Again, a callback function is called continuously as the user drags the Scale
widget. If the widget is currently set to 6 and the user drags it to 10, this
function will be called for values 7, 8, 9, and 10. In a larger range the function
will be called continuously, but the system might not be fast enough to keep up
with the users dragging. You are guaranteed, however, that it will be called for
the value the dragging stops at.

An Entry widget serves a similar purpose, but for the entry of strings. This
gives the user a text box into which to type. One difference between the Entry
widget and other widgets is that nothing signals when the user is finished typing.
We will later see a way to use the <Return>-key as a signal, but for now we will
just use a button. The user can enter a string into the Entry box, and click the
button as a signal that the entry is ready.

Because there is no callback function, the code to create an Entry box is
particularly simple:

Entry(parent, variable = <control variable>)

As with all of the widgets, the first argument to this constructor is the window
in which it will be placed. The only other argument is the control variable that
will hold the text the user enters into the box. This must be of type StringVar.

9.2. WIDGETS WITH VALUES 253

Here is code to create an entry box and a button, followed by code for the
buttons callback:

global numberOfVertices

numberOfVertices = StringVar ()

t = Entry(MenuBar, textvar = numberOfVertices)
t.grid (row=0, column=1)

DrawButton = Button(MenuBar, text = "Draw", \
command = self.Draw)
DrawButton. grid (row=0, column = 2)

def Draw(self)
n = int(numberOfVertices.get())
<code to draw a polygon with n vertices>

The following program illustrates these ideas. This is a complete program
for drawing a number of circles given by the user. The user has two choices for
input: either a Scale widget or an Entry box. Each is accompanied by a button
whose callback function handles the actual drawing. Dont worry about the code
for drawing circles; we will discuss that in section 8.3.

254

CHAPTER 9. GRAPHICS AND USER INTERFACES

from tkinter import x*
from random import x

class GUI(Frame):

def __init__(self):

Frame. __init__(self, None)
self.grid ()
MenuBar = Frame(sel

f)
MenuBar. grid (row = 0, column = 0, sticky=W)
QuitButton=Button (MenuBar, text="Quit" ,command=self.quit)

QuitButton. grid (row = 0, column = 0)

self .numCircles = IntVar ()

s = Scale(MenuBar, from_. =1, to=50, \
orient=HORIZONTAL, variable = self.numCircles)

s.grid (row=0, column = 1)

lab = Label(MenuBar, text="Number of Circles”)

lab.grid (row=1, column=1)

sButton = Button(MenuBar, text="Draw”, \
command = self.DrawCircles)

sButton.grid (row = 0, column = 2)

self.numCircles2 = StringVar ()

e = Entry(MenuBar, textvar = self.numCircles2)

e.grid(row = 0, column = 3)
lab2 = Label(MenuBar, text = "Number of Circles”)
lab2 . grid (row = 1, column = 3)

sButton2 = Button(MenuBar, text = "Draw", \
command = self.DrawCircles2)
sButton2.grid (row = 0, column = 4)

global canvas

canvas = Canvas(self, width=500, height=500, \
background="white")

canvas.grid (row=1, column=0)

Program 9.2.1: Circle Drawer, first part

9.2. WIDGETS WITH VALUES 255

def DrawCircles(self):
canvas.delete(" all™)
n = self.numCircles.get()
for x in range(0, n):
RandomCircle ()

def DrawCircles2(self):
canvas.delete(" all”)
n = int(self.numCircles2.get())
for x in range(0, n):
RandomCircle ()

class Circle:

def __init__(self, x, y, radius, color):
self.my_shape = canvas.create_oval(x—radius, y—radius,
x+radius , y+radius, fill = color)

def RandomCircle ():
x = randint (1, 500)
y = randint (1, 500)
radius = randint (5, 50)
colors = ["red”, "green", "blue”, "yellow”, "purple"”]
color = colors[randint(0, 4)]

Circle(x, y, radius, color)
def main ():
window = GUI ()

window . mainloop ()

main ()

Program 9.2.1: Circle Drawer, conclusion

256 CHAPTER 9. GRAPHICS AND USER INTERFACES

9.3 Drawing

Tk provides a rich and easy-to-use set of primitive drawing operations. To use
them we need to create a canvas widget, and then draw upon it. Since all of the
drawing operations need access to the canvas widget, it is easiest to make this
a global variable. The code for constructing a canvas is simple:

global canvas
canvas=Canvas(self ,width=500,height=500,background="white")
canvas.grid (row=1, column=0)

The canvas is generally a child of the main GUI window. The only objects in this
window typically are the MenuBar and the canvas. I usually put the MenuBar
in row 0 and the canvas in row 1, below the MenuBar.

Canvases have a natural (x, y) coordinate system. The x-coordinate mea-
sures the distance in pixels from the left edge of the canvas; the y-coordinate
measures the distance of the pixel from the top of the canvas. As we move to the
right the x-coordinate increases; as we move DOWN the y-coordinate increases.
This surprises some people who remember y-coordinates increasing as you move
up in the traditional Cartesian coordinates in analytic geometry.

Canvas objects have methods for drawing various shapes. The most com-
mon shapes are rectangles (which include squares), ovals (including circles) and
polygons. For rectangles you must give first the coordinates of the upper-left
corner of the rectangle, then the coordinate of the lower-right corner. The de-
fault drawing color is black, but you can change this to any other color by giving
the fill parameter of the drawing command the name of the color to draw.

For example, the following function draws a rectangle with upper-left corner
at (x0, y0) and lower-right corner at (x1, y1):

def Rectangle(x0, y0, x1, yl, color):
canvas.create_rectangle(x0, y0, x1, yl, fill=color)

We might call this with:
Rectangle (300, 300, 400, 450, red)

There is a corresponding canvas. create_oval () method that draws ellipses. This
takes the same arguments as canvas. create_rectangle (): the coordinates of
the upper-left and lower-right corners, then fill —color. Since we are used to
thinking of a circle as points a fixed distance from the center of the circle, we
can write a function that takes the center and radius of the circle and builds
the rectangle that surrounds the circle. Here is such a function:

def Circle(x, y, radius, color):
canvas.create_oval(x—radius, y—radius, \
x+radius , y+radius, fill=color)

Altogether, the following program will create a canvas and draw a circle and
square on it:

9.3. DRAWING 257

from tkinter import x

class GUI(Frame):
def __init__(self):
Frame. __init__(self , None)
self.grid ()

MenuBar = Frame(self)
MenuBar. grid (row = 0, column = 0, sticky=W)

QuitButton=Button (MenuBar, text="Quit" ,command=self . quit)
QuitButton.grid (row = 0, column = 0)

global canvas

canvas=Canvas(self, width=500, height=500,)\
background="white")

canvas.grid (row=1, column=0)

def Circle(x, y, radius, color):
canvas.create_oval(x—radius, y—radius, \
x+radius , y+radius, fill=color)
canvas.update()

def Rectangle(x0, y0, x1, yl, color):
canvas.create_rectangle(x0, y0, x1, yl, fill=color)

def main():
window = GUI()
Circle (100,100, 50, "red”)
Rectangle (300, 300, 400, 450, "green")
window . mainloop ()

main ()

Program 9.3.1: Simple Drawing Program

Here is a picture of the canvas this creates:

258 CHAPTER 9. GRAPHICS AND USER INTERFACES

[w)
Quit

The canvas. create_rectangle () and similar drawing methods return a value
that can be used to manipulate the shape has been drawn. In particular, if we
draw a 100x100 green rectangle with

r =canvas.create_rectangle(100,150,200,250, fill="green"
then we can move this rectangle 10 units horizontally and 30 vertically with
canvas.move(r, 10, 30)
We can change its color to red with
canvas.itemconfigure(r, fill="red")

Since this allows us to give functionality to the shapes, it makes sense to repre-
sent each category of shapes by a class. In the following code we make classes
Rectangle, Square, Oval, Circle and Polygon. To avoid repeating the same code
for each class, we make a top-level Shape class that contains all of the uniform
code. Each of our basic shapes is a subclass of Shape, and each is constructed
with only the code that differs from the uniform Shape code.

9.3. DRAWING 259

from tkinter import x

class GUI(Frame):
def __init__(self):
Frame. __init__(self , None)
self.grid ()

MenuBar = Frame(self)
MenuBar. grid (row = 0, column = 0, sticky=W)

QuitButton=Button (MenuBar, text="Quit" ,command=self . quit)
QuitButton.grid (row = 0, column = 0)

global canvas

canvas = Canvas(self, width=500, height=500, \
background="white")

canvas.grid (row=1, column=0)

class Shape:

def __init__(self, vertices, color):
self.color = color
self.vertices = vertices
self.my_shape = None

def Moveto(self, a, b):
This moves the shape to point (a,b)

[x, y] = self.vertices [0]
d0 = a—x
dl = b—y

self.Moveby(d0, dl)

def Moveby(self, a, b):

This moves the shape a units horizontally
and b units vertically.
canvas.move(self.my_shape, a, b)
canvas.update ()
for v in self.vertices:

v[0] = v[0] + a

v[l] = v[1l] + b

Program 9.3.2: Shape Classes

260 CHAPTER 9. GRAPHICS AND USER INTERFACES

def ChangeColor(self, color):
This changes the shape's color.

Possible colors include "white”, "black”,

"red”, "green”, "blue”, "yellow"”, "cyan”,

"magenta”, "light green”, etc.
canvas.itemconfigure(self.my_shape, fill = color)
canvas.update ()

self.color = color

def delete(self):
canvas.delete(self.my_shape)

class Rectangle(Shape):
def __init__(self, x, y, x1, yl, color):
This creates a square with corners (x, y) and (x1, yl)
Shape. __init__(self, [[x, y], [x1, yl]]., color)
self.my_shape = canvas.create_rectangle(x, y, x1, yl, \
fill = color)

def pos(self):
return (self.vertices [0][0], self.vertices[0][1])

class Oval(Shape):

def __init__(self, x, y, hrad, vrad, color):
This creates an oval centered at (x, y)
with horizontal radius hrad and
vertical radius vrad
Shape. __init__(self, [[x—hrad, y—vrad], \
[x+hrad, y+vrad]], color)

v0 = self.vertices [0]
vl = self.vertices[1]
self.my_shape = canvas.create_oval(v0[0], vO[1], \
vl[O0], v1[1l], fill = color)
def pos(self):
v0 = self.vertices [0]
vl = self.vertices[1]

return ((v0[0]+v1[0])/2, (vO[1]+vl[1])/2)

class Square(Rectangle):
def __init__(self, x, y, side, color):

This creates a square with upper left corner at (x, y)
and length side

Rectangle. __init__(self, x, y, xt+side, y+side, color)

Program 9.3.2: Shape Classes, continued

9.3. DRAWING 261

class Circle(Oval):
This creates a circle centered at (x, y)
with the given radius
def __init__(self, x, y, radius, color):
Oval. __init__(self, x, y, radius, radius, color)

class Polygon(Shape):

To create a polygon make a list of its vertices
(each vertext itself is a list [x, y];

you need a list of these)

and call canvas.create_polygon ().

This returns a reference to the polygon

that you will need if you ever want to

change or delete it.

def __init__(self 6 vertices, color):
Shape. __init__(self, vertices, color)
self.my_shape=canvas.create_polygon(vertices , fill=color)

canvas.update()
self.pos = (vertices[0][0], vertices[O0][1])

def main():
window = GUI()
Circle (250,250, 100, "red”)
window . mainloop ()

main ()

Program 9.3.2: Shape Classes, continued

262 CHAPTER 9. GRAPHICS AND USER INTERFACES

9.4 Animation

It is tempting to try to animate objects by giving each object a loop that
describes its motion, as in

def randomCircle(self):
c = Circle(250, 50, 30, "red”)
while True:
c.Moveby(0, —0.1)
(x, y)= c.pos()
if y< 0
break

This suffers from two problems. First, it isnt interruptable; if we try to exit
from the program, perhaps via a Quit button, the program will wait until this
animation is finished before exiting. Even worse, if we have several objects with
code like this only one will move at a time, continuing its motion until it is
finished before the next object starts to move.

To make our animations more effective, we need three simple components:

a. We will give every object a NextStep() method that performs one small
step of the objects entire motion.

b. We will store all of the moving objects in an AnimationList. One step of
the global animation will consist of running through the AnimationList and
telling each object in it to take its NextStep().

c. Instead of looping through this process, which would not be interruptable,
we will make use of a special method of the Canvas class:

canvas. after(<time to pause>, <function >)

This method pauses for a small amount of time (measured in milliseconds),
then calls the given function.

This does everything we want. If our individual NextStep() methods arent too
complex and if we dont have too many objects in the animation list, this can
make the motions look continuous and smooth. By adjusting the first argument
of the canvas. after () call we can fine-tune the speed of the animation. All
of our widgets that need user control will still be functional; the system will
respond to them after each pass through the AnimationList.

For a first example, we have a program with a drawing menu with two
options: Square and Circle. When the user selects one of these options a random
shape of that type is drawn and added to the AnimationList. The NextStep
function is particularly simple: it moves the shape downward a small amount.
When the object gets to the bottom of the canvas it is deleted. Here is the
NextStep() method for each object:

def NextStep(self):
self.Moveby (0, 2)

9.4. ANIMATION 263

and here is the Animate() function:

def Animate():
for object in AnimationList:
object . NextStep ()
(x, y) = object.pos()
if y > 500:
i = AnimationList.index(object)
del AnimationList[i]
object.delete ()
canvas.after(50, Animate)

What follows is the complete program for this, omitting the definition of the
drawing classes that we saw in the last section:

from tkinter import x
from time import x
from random import x

class GUI(Frame):
def __init__(self):

Frame. __init__(self, None)
self.grid()
MenuBar = Frame(sel

f)
MenuBar. grid (row = 0, column = 0, sticky=W)

self.MakeDrawingMenu (MenuBar)

QuitButton. grid (row = 0, column = 0)

global canvas

canvas=Canvas(self, width=500, height=500, \
background="white")

canvas.grid (row=1, column=0)

global Circlelist
CircleList = []

QuitButton=Button (MenuBar, text="Quit" ,command=self . quit)

Program 9.4.1: Squares and Circles

264

CHAPTER 9. GRAPHICS AND USER INTERFACES

def

def

def

MakeDrawingMenu (self , MB):
Draw_button = Menubutton (MB, text='Draw’)
Draw_button.menu = Menu(Draw_button)

Draw_button ['menu’] = Draw_button.menu
Draw_button.grid (row = 0, column = 1)
Draw_button.menu.add_command(label="Square', \
command=self.randomSquare)
Draw_button.menu.add_command(label="Circle ', \

command=self.randomCircle)

randomSquare(self):

colors=["red"” ," green” ," blue” ," yellow" ,”" orange"” ," brown" |
x = randint (1, 500)

y = randint (1, 500)

size = randint (5, 50)

color = colors[randint(0, len(colors)—1)]

s = Square(x, y, size, color)

AnimationList.append(s)

randomCircle(self):

colors=["red” ," green” ," blue" ," yellow" ," orange” ," brown"]
x = randint (1, 500)

y = randint (1, 500)

size = randint (3, 25)

color = colors[randint(0, len(colors)—1)]

c¢ = Circle(x, y, size, color)

AnimationList.append(c)

Program 9.4.1: Squares and Circles, continued

9.4. ANIMATION 265

def Idle ():
for object in AnimationList:
object . NextStep ()
(x, y) = object.pos()
if y > 500:
i = AnimationList.index(object)
del AnimationList[i]
object.delete ()
canvas.after(50, ldle)

def main():
global AnimationlList
AnimationList = []
window = GUI()
Idle ()
window . mainloop ()

main ()

Program 9.4.1: Squares and Circles, concluded

Here is a picture of this programs window as it runs:

T]

L]

The next example has particles bouncing off walls indicated by the edges of the
canvas. This time we make a class Particle to represent the moving bodies.
Particle is just a subclass of Circle, with a few added properties. To make the
particle move we maintain a vector <x.dir, y_dir> that holds a change amount
for the x- and y-directions. At each step of the animation we add x_dir to the
particles x-coordinate and y_dir to its y-coordinate. This moves the particle in
a straight, not necessarily horizontal or vertical, line. To bounce off the vertical
walls, on which the x-coordinate is a constant, we maintain the same value
of y_dir and change x.dir to x.dir . Similarly, to bounce off the horizontal
walls, where the y-coordinate is constant, we change y_dir to y.dir . Here is
the resulting Particle class:

266

CHAPTER 9. GRAPHICS AND USER INTERFACES

class Particle(Circle):

def

def

__init__(self):
x = randint (0, 500)
y = randint (0, 500)
self.radius = 10

colors = ["red” ,"green” " blue” ,"yellow" ,\
"purple” " orange” ," magenta”]

color = colors[randint(0, len(colors)—1)]

Circle. __init__(self, x, y, self.radius, color)

self.x_dir = randint(—3, 3)
self.y_dir = randint(—3, 3)

NextStep(self):
self.Moveby(self.x_dir, self.y_dir)

(x, y) = self.pos()
if x < 5 or x > 495:

self.x_dir = —self.x_dir
if y <5 or y > 495:
self.y_dir = —self.y_dir

Here is the complete program.

9.4. ANIMATION 267

from tkinter import x
from random import x

class GUI(Frame):
def __init__(self):

def

Frame. __init__(self, None)
self.grid()

MenuBar = Frame(self)

MenuBar. grid (row = 0, column = 0, sticky=W)

QuitButton = Button(MenuBar, text="Quit", \
command = self.quit)

QuitButton.grid(row = 0, column = 0)

MoreButton = Button(MenuBar, text="More", \
command = self.MoreParticles)
MoreButton. grid (row = 0, column = 1)

PauseButton = Button(MenuBar, text="Pause”, \
command = Pause)
PauseButton.grid (row = 0, column = 2)

global canvas

canvas = Canvas(self, width=500, height=500, \
background="white")

canvas.grid (row=1, column=0)

MoreParticles(self):
p = Particle()
AnimationList.append(p)

Program 9.4.2: Bouncing Off the Walls

268

CHAPTER 9. GRAPHICS AND USER INTERFACES

class Shape:

def

def

def

def

def

def

__init__(self, vertices, color):

self.color = color
self .vertices = vertices
self.my_shape = None

Moveto(self , a, b):

This moves the shape to point (a,b)
(x, y) = self.pos()

d0 = a—x

dl = b—y

self.Moveby(d0, dl)

Moveby (self , a, b):
This moves the shape a units horizontally
and b units vertically
canvas.move(self.my_shape, a, b)
canvas.update()
for v in self.vertices:

v[0] = v[0] + a

v[l] = v[1l] + b

ChangeColor(self, color):
This changes the shape's color. Possible

colors include "white”, "black”, "red”, etc.
canvas.itemconfigure(self.my_shape, fill = color)
canvas.update ()

self.color = color

delete(self):
canvas.delete(self.my_shape)

pos(self):
return (self.vertices [0][0], self.vertices[0][1])

class Oval(Shape):

def

def

__init__(self, x, y, hrad, vrad, color):

This creates an oval centered at (x, y) with \

horizontal radius hrad and vertical radius vrad

Shape. __init__(self ,[[x—hrad ,y—vrad], [xt+hrad, 6 y+vrad]],\
color)

v0 = self.vertices [0]

vl = self.vertices[1]

self.my_shape = canvas.create_oval(v0[0], vO[1], \
vl[0], v1[1], fill = color)

pos(self):

v0 = self.vertices [0]

vl = self.vertices[1]

return ((vO[0]4+v1[0])/2, (vO[1l]+v1l[1l])/2)

Program 9.4.2: Bouncing Off the Walls, continued

9.4. ANIMATION 269

270 CHAPTER 9. GRAPHICS AND USER INTERFACES

class Circle(Oval):
Creates a circle centered at (x, y) with the given radius
def __init__(self, x, y, radius, color):
Oval. __init__(self, x, y, radius, radius, color)

class Particle(Circle):
def __init__(self):

x = randint (0, 500)

y = randint (0, 500)
self.radius = 10

colors = ["red", "green", "blue”, "yellow”, \
"purple”, "orange”, "magenta”]

color = colors[randint(0, len(colors)—1)]

Circle. __init__(self, x, y, self.radius, color)

self.x_dir = randint(—-3, 3)+ 0.5
self.y_dir = randint(-3, 3)+ 0.5

def NextStep(self):
self . Moveby(self.x_dir, self.y_dir)

(x, y) = self.pos()
if x <5 or x > 495:

self.x_dir = —self.x_dir
if y <5 or y > 495:
self.y_dir = —self.y_dir
def Animate():
if pause:
return

for x in Animationlist:
x. NextStep ()
canvas.after(1, Animate)

def Pause():
global pause

if pause:
pause = False
Animate ()
else:
pause = True
def main():

global AnimationList
AnimationList = []
global pause

pause = False

window = GUI()
Animate ()
window . mainloop ()

main ()

Program 9.4.2: Bouncing Off the Walls, concluded

9.5. EVENTS

9.5 Events

271

An event is any user interaction with a program. This might involve pressing a
key, clicking the mouse button, and moving or dragging the mouse. Every time
the user initiates any of these actions the system generates an event signal. Some
widgets are designed to react to these signals. A button, for example, waits for
a mouse button to be clicked on it; when this happens the buttons callback
function is called. Any widget can be programmed to listen for specific events
and then call designated functions when these events occur. In this section we
will see how this event programming works.

The first step in getting a widget to respond to event signals is to tell the
widget to listen for signals. If w is a widget, then

w. focus_set()

tells the widget to pay attention to signals.
The next step is to register a function as the callback for a specific event.
Again, if w is the widget this is done with

Widget. bind (w, <event descriptor >, <function >)

Here Widget is the superclass for all widget classes. The <event descriptor > is
a string, such as "Button—1", which refers to the left mouse button (the only
mouse button on a Mac). Here is a table of event descriptors:

Descriptor

Event

7 < KeyPress —a >"

The

users presses the ”a” key

7 < KeyPress — A >"

The

user presses the 7A” key

The

other letters and digits are similar.

" < KeyPress — space >"

The

user presses the space bar

7 < KeyPress — Return > "

The

user presses the Return (or Enter) key

" < KeyPress —Up >7

The

user presses the up-arrow

7 < KeyPress — Down >"

The

user presses the down-arrow

" < KeyPress — Left > 7

The

user presses the left-arrow

? < KeyPress — Right >

The

user presses the right-arrow

" < Any — KeyPress > 7

The

user presses any key.

? < Button —1>7

The

user clicks the left mouse button (or only mouse button)

? < Button —2 >7"

The

user clicks the middle mouse button

? < Button — 3 >

The

user clicks the right mouse button

? < Bl — Motion >"

This represents a dragging event with the left mouse button

The callback function for any event binding should take one argument, which
is an object representing the event. We usually call this argument "event”. The
specifics of the object will vary according to the type of event that has occurred.
With mouse events event.x and event.y are the coordinates of the mouse at
the time the event occurred. With keyboard events event.keysym is a string
representing the key that was pressed. For letter keys this is the letter as a

string: "A”, or "a

, "space”, "Return” and so forth.

272 CHAPTER 9. GRAPHICS AND USER INTERFACES

Here, for example, is the code needed to empower the ”q” key to exit the
program:

class GUI(Frame):

global canvas

canvas = Canvas(self, width=500, height=500, background="white
canvas.grid (row=1, column=0)

canvas.focus_set ()

Widget . bind (canvas, "<KeyPress—q>", self.quitter)

def quitter(self, event):
self.quit()

This binds the " <KeyPress—q>" description to a function that calls the quit()
method of the Frame class. Note that the callback for the binding must take an
event argument,so we cant directly connect to the self . quit () method.

If you want to interact with objects that have been drawn on the canvas,
it is important to be able to determine which objects are under the cursor
when the mouse button is clicked. While it would be possible to program
this yourself, the tk system provides some hooks that make this easy. When
shapes are created it is possible to give them ”tags”, which are strings. The
canvas. getttags (object) method returns a list of all of the tags that have
been given to a specific object. The canvas. find_withtag (tag) method re-
turns a list of all of the objects that have the given tag. As the mouse moves
around the canvas, the system gives a tag " current” to the topmost (most re-
cently drawn) object that the mouse is currently over. So we can find the
object the mouse is currently over by finding the shape in the first entry of
canvas. find_withtag (" current”)

Here is how we might use all of this to create a simple circle-drawing program.
We set up the interface to have a Draw button for circles and a set of radio
buttons to select the current drawing color. To allow for dragging circles after
they have been drawn we bind the left mouse button to a function that selects
the circle into which we have clicked, and we bind the dragging operation with
the left mouse button to a function that moves the current circle. We also bind
the "d" key on the keyboard to a function that deletes the circle the mouse is
currently over. This much of our interface definition is as follows:

class GUI(Frame):
global ColorChoice
ColorChoice = StringVar ()
ColorChoice.set("red"”)
rl=Radiobutton (MenuBar, value = "red" ,text="red" ,\
variable=ColorChoice)
rl.select ()
rl1.grid (row=0, column = 1)

9.5. EVENTS 273

r2=Radiobutton (MenuBar, value="green"” ,text="green"” ,\

variable = ColorChoice)

r2.grid (row=0, column = 2)

r3=Radiobutton (MenuBar, value="blue" ,text = "blue” ,\
variable = ColorChoice)

r3.grid (row=0, column = 3)
rd=Radiobutton (MenuBar, value="cyan" ,text="cyan" ,\

variable = ColorChoice)

r4 . grid (row=1, column = 1)

r5=Radiobutton (MenuBar, value="magenta" , text="magenta” ,\
variable = ColorChoice)

r5.grid (row=1, column = 2)

r6=Radiobutton (MenuBar, value="yellow’
variable = ColorChoice)

r6.grid (row=1, column = 3)

,text="yellow" ,\

CircleButton = Button(MenuBar, text="Circle”, \
command = self.DrawCircle)
CircleButton.grid(row = 0, column = 4)

global canvas

canvas = Canvas(self, width=500, height=500, \
background="white")

canvas.grid (row=1, column=0)

canvas.focus_set ()

Widget. bind (canvas, "<Button—1>", self.SelectCircle)

Widget . bind (canvas, "<Bl—Motion>", self.Drag)

Widget . bind (canvas, "<KeyPress—d>", self.DeleteCircle)

We draw circles (after the Draw button is clicked) at a random position using
the ColorChoice selected with the radio buttons:

def DrawCircle(self):
x = randint (0, 500)
y = randint (0, 500)
color = ColorChoice.get()
c¢ = Circle(x, y, 20, color)
CircleList.append(c)

We move a circle by clicking inside it, then dragging the mouse with the
button depressed. The initial click calls the function

274 CHAPTER 9. GRAPHICS AND USER INTERFACES

def SelectCircle(self, event):
global current
L = canvas.find_withtag (" current”)
for ¢ in CirclelList:
if c.my_shape in L:

current = c
break
global last_pos
last_pos = (event.x, event.y)

This sets a global variable current, which is the object in our Circle class that
contains the "current” tag. It also sets the initial value of a global variable
last_pos, that we use in the dragging operation.

The mouse-drag callback looks at the current mouse position and the current
circle (set in the SelectCircle () function) by the difference between the current
position and the last position. It would be slightly simpler to move the current
circle to the current mouse position, but that has the unfortunate effect of
making the circle jump so that its center is at the mouse position when you
start dragging. This unexplained jump is awkward for users, so instead we keep
track of the mouses relative motion and use that as the basis for the circle
movement. Of course, each time the Drag() function is called we need to reset
the value of our global variable last_pos.

def Drag(self, event):
global last_pos
current . Moveby(event.x—last_pos[0], \
event.y—last_pos[1])
last_pos = (event.x, event.y)

Finally, we delete a circle in two steps. We need to both erase it from the
screen and remove it from our CircleList . Erasing it means finding its shape
and calling the canvas. delete () method on this shape. To remove it from the
CircleList , we must first find the Circle object that contains this shape, then
the index of this object in our CircleList , and finally delete this element from
the list. Altogether we get the following code:

def DeleteCircle(self, event):
print " deleting”

shape = canvas.find_withtag(”" current”)
if shape = ():
return

canvas.delete(shape[0])
for ¢ in CirclelList:
if c.my_shape = shape[0]:
i = CircleList.index(c)
del CircleList[i]

Putting all of these together, here is the full program:

9.5. EVENTS

275

from tkinter import x
from random import x

class GUI(Frame):
def __init__(self):
Frame. __init__(self, None)
self.grid()

MenuBar = Frame(sel

f)
MenuBar. grid (row = 0,

column = 0, sticky=W)
QuitButton=Button (MenuBar, text="Quit", \

command = self.quit)
QuitButton.grid(row = 0, column = 0)

global ColorChoice
ColorChoice = StringVar ()
ColorChoice.set("red")

rl=Radiobutton (MenuBar, value = "red” , text="red" ,\

variable=ColorChoice)
rl.select ()
r1.grid (row=0, column = 1)

r2=Radiobutton (MenuBar, value="green" ,text="green",

variable = ColorChoice)

r2.grid (row=0, column = 2)

r3=Radiobutton (MenuBar, value="blue"” ,text = "blue” ,\
variable = ColorChoice)

r3.grid (row=0, column = 3)

r4=Radiobutton (MenuBar, value="cyan" ,text="cyan" ,\

variable = ColorChoice)
r4 . grid (row=1, column = 1)

rb=Radiobutton (MenuBar, value="magenta” , text="magenta” ,\

variable = ColorChoice)
r5.grid (row=1, column = 2)

r6=Radiobutton (MenuBar, value="yellow"” , text="yellow" ,\

variable = ColorChoice)
r6.grid (row=1, column = 3)

Program 9.5.1: Drawing With Circles

276

CHAPTER 9. GRAPHICS AND USER INTERFACES

def

def

def

CircleButton = Button(MenuBar, text="Circle”, \
command = self.DrawCircle)
CircleButton.grid(row = 0, column = 4)

global canvas

canvas = Canvas(self, width=500, height=500, \
background="white")

canvas.grid (row=1, column=0)

canvas.focus_set ()

Widget . bind (canvas, "<Button—1>", self.SelectCircle)
Widget . bind (canvas, "<Bl—Motion>", self.Drag)
Widget. bind (canvas, "<KeyPress—d>", self.DeleteCircle)

global Circlelist
CircleList = []

DrawCircle(self):

x = randint (0, 500)

y = randint (0, 500)

color = ColorChoice.get()

c = Circle(x, y, 20, color)
CircleList .append(c)

SelectCircle(self, event):
global current
L = canvas.find_withtag (" current”)
for ¢ in CirclelList:
if c.my_shape in L:

current = c¢
break
global last_pos
last_pos = (event.x, event.y)

Drag(self, event):

global last_pos

current . Moveby(event.x—last_pos[0], event.y—last_pos|[1])
last_pos = (event.x, event.y)

Program 9.5.1: Drawing With Circles, continued

9.5. EVENTS 277

def DeleteCircle(self, event):
print "deleting”

shape = canvas.find_withtag(”"current”)
if shape = ():
return

canvas.delete(shape[0])
for ¢ in Circlelist:
if c.my_shape = shape[0]:
i = CircleList.index(c)
del CircleList[i]

class Shape:

def __init__(self, vertices, color):
self.color = color
self.vertices = vertices
self.my_shape = None

def pos(self):
return (self.vertices[0][0], self.vertices[0][1])

def Moveto(self, a, b):
This moves the shape to point (a,b)
(x, y) = self.pos()
d0 = a—x
dl = b—y
self.Moveby(d0, dl)

def Moveby(self, a, b):

This moves the shape a units horizontally
and b units vertically
canvas.move(self.my_shape, a, b)
canvas.update()
for v in self.vertices:

v[0] = v[0] + a

v[1l] = v[1] + b

def ChangeColor(self, color):
This changes the shape's color.
Possible colors include

"white”, "black”, "red”, "green”, etc.
canvas.itemconfigure(self.my_shape, fill = color)
canvas.update()

self.color = color

Program 9.5.1: Drawing With Circles, continued

278 CHAPTER 9. GRAPHICS AND USER INTERFACES

class Oval(Shape):

def __init__(self, x, y, hrad, vrad, color):
This creates an oval centered at (x, y) with
horizontal radius hrad and vertical radius vrad
Shape. __init__(self, [[x—hrad, y—vrad], \
[x+hrad, y+vrad]], color)

v0 = self.vertices [0]
vl = self.vertices[1]
self.my_shape = canvas.create_oval(v0[0], vO[1], \
vl[0], v1[1l], fill = color)
def pos(self):
v0 = self.vertices [0]
vl = self.vertices[1]

return ((v0[0]+v1[0])/2, (vO[l]+vl[1l])/2)

class Circle(Oval):

Creates a circle centered at (x, y) with the given radius
def __init__(self, x, y, radius, color):
Oval. __init__(self, x, y, radius, radius, color)

def main():
window = GUI()
window . mainloop ()

main ()

Program 9.5.1: Drawing With Circles, conclusion

